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Chapter 1

Introduction

As the title indicates, we are focusing two-dimensional manifolds, endowed
with additional structure, and attempt to give a complete classification. More
specifically, we require our surface M to be compact, connected, and orientable.
Loosely speaking, this means the main question we will have in mind through-
out this paper is the following:

When are two surfaces M7 and My equivalent?

Where of course, as we endow the surfaces with more structure, the objects
we wish to relate will vary depending on the context, along with the notions
of equivalence.

The thesis is divided into two chapters. In the first one, we would like to see
under which conditions two compact, and connected manifolds equipped with
an area form, (A41,;) and (Ag,as), are equivalent in the sense that there
exists an area preserving diffeomorphism. We will show that it is possible to
classify, for A fixed, the possible area forms of A by the positive real number

/

Hence the conclusion will be that (A1, 1) admits an area preserving diffeomor-
phism to (Ag, az) if and only if A; and Ay are diffeomorphic, and in addition

/041:/ Q9.
Ay Ao

Following up this question will quickly lead us to the beginnings of symplectic
geometry.

In the second chapter, we will consider (A, a,), for A any (compact, con-
nected, orientable) surface, o an area form, and ¢ a special type of action on
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A by S', a so-called hamiltonian action. One might expect to find a lot of
variety in this classification as we are letting A, o and v vary, but as we will
see, requiring ¥ to be hamiltonian turns out to be a major constraint, to the
point where the only possible triples will be the spheres S? of any positive
radius, along with multiples of the standard euclidean area form, and rotation
around the vertical axis of the sphere for the action ).

Our argumentation follows closely A. C. Da Silva’s Lecture Notes on Syplec-
tic Geometry [1], and a seminar she gave on Symplectic Toric Manifolds [2],
held at ETH Ziirich during the spring semester 2019, which have both been
invaluable resources in writing this thesis.



Chapter 2

Classification by Total Area

This part considers a compact, connected, orientable surface A with a choice
of area form «. So first, we have to clarify the notion of equivalence between
two tuples (A1, 1) and (Az, a). We should certainly require A; and As to
be diffeomorphic, say by ¢, and the notion of area being preserved is captured
by requiring that the pullback satisfy

*
prag = a.

The question of when two surfaces are diffeomorphic is answered by the usual
classification of surfaces via their genus and will not be treated further in
this thesis. So throughout, we assume A; and Ay to be diffeomorphic by @;
then (A1, aq) is equivalent to (Ag, ae) if and only if (A1, 1) is equivalent to
(A1, ¢*ag). Hence we may as well fix a surface A, but endow it with two area
forms a1, as, and ask under which circumstances there exists a diffeomorphism
p: A— A such that p*as = .

Of course, if there is such a diffeomorphism, the total area is the same:

/oq:/so*az:/ a2=/a2,
A A o(A) A

The assertion is now that we can in fact classify (A, «) by total area:

Theorem 2.1 Let A be a compact, connected, orientable surface and a1 and
g area forms on A. There exists an area-preserving diffeomorphism ¢ : A —
A, that is, such that p*as = «aq, if and only if

/Oq:/ag.
A A

The goal of this chapter is to prove the other direction, that is, the existence
of an area preserving diffeomorphism, provided both area forms on A give the
same total area.



2.1. Symplectic Preliminaries

2.1 Symplectic Preliminaries

We will use some results from symplectic geometry in the following discussion,
which makes it useful to explain how (A, ) can be considered a symplectic
manifold.

Definition 2.2 Let M be any manifold. A symplectic form on M is any
closed, non-degenerate two form on M, that is, w € Q>(M) such that

e dw =0,
e Foranyp e M and uw e T,M \ {0}, the map
wp(u,-) : Tp,M — R
s not identically zero.
A symplectic manifold is a pair (M,w) for w a symplectic form on M.

Equivalence among symplectic manifolds is characterised by symplectomor-
phisms: a symplectomorphism ¢ from a symplectic manifold (M,w) to
another, (N,0), is a diffeomorphism ¢ : M — N such that ¢*0 = w.

Proposition 2.3 Let a an area form on an orientable two-dimensional man-
ifold M. Then « is a symplectic form, making (M, «) into a symplectic man-
ifold.

Proof « is clearly closed as it is of top degree. As «a is an area form, it is
nonvanishing, so for any = € M, there exist u,v € T,, M such that w, (u,v) # 0.
As w, is alternating, u and v must be linearly independent, for else w;(u,v) =
wy(u, au) = awy(u,u) = 0. Thus (u,v) is a basis of T, M and for v’ € T, M\{0}
arbitrary, write v’ = Aju + Agv for A; # 0 without loss of generality. Then
we (v, v) = Mwg(u,v) # 0. O

Thus our guiding question can be rephrased:
When are (A, 1) and (A, ag) symplectomorphic?

In the next section, we will state and prove a theorem by Moser giving a
sufficient condition for the existence of such a symplectomorphism, more in
fact- the existence of an isotopy. The remainder of the chapter will be spent
proving that the conditions for the Moser theorem are, in fact, met in the case
of our surface A and two area forms satisfying [,, a1 = [,, aa.

2.2 The Moser Trick

Our problem is similar to a question Moser asked and answered. More gener-
ally, he was concerned with compact symplectic manifolds (M, wy) and (M, w1 ),
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2.2. The Moser Trick

and asked whether one could find a symplectomorphism ¢ which was, in ad-
dition, homotopic to idys. Our treatment of the Moser trick follows chapters
6 and 7 of [1].

Definition 2.4 (Isotopy) Letp: M xR — M a map. p is called an isotopy
if for all t € R, the map py = p(-,t) : M — M is a diffeomorphism, and
po = id.

If we are given an isotopy p, we may define for each ¢t € R the vector field

d

-1
= 5 s 3 .
Tl P (pr (p)) peM

s=t

vt(p)

A family of vector fields (v;); is called a time-dependent vector field. Here,
each vector field v; satisfies

d d »
ds|,_, ps(p) = T P (o1 (pe(p))) = vt (pe(p))
That is,
d
% e (2.1)

If, conversely, we start with a time dependent vector field v, it has a time-
dependent flow ¢ such that for tp € R, p € M and t € R close to tg, the
curve

v it (L, to, p)

is the unique maximal integral curve of v; with initial condition ~(tg) = p,

that is
d

ds|,_,

and 9(to,to,p) = p for all tp € R and p € M. Let 9y = ¥(s,t,-) and
assume M is compact, or that the v; are compactly supported. Then the
maximal integral curves exist for all time ¢ € R. To see how we can use the
time-dependent flow to obtain an isotopy on M, we state two more properties
of the flow as in [3], theorem 9.48:

¢(Sa t(),p) = Ut(w(ta tpr))

Proposition 2.5 (Properties of time-dependent flow) Let M be a com-
pact manifold and (vi); a time-dependent vector field on M. Then its flow v
satisfies

(a) Ysp): M — M is a diffeomorphism for all s,t € R with inverse 1 s,
(b) w(thto) © w(to,tQ) = ¢(t1,t2)‘



2.2. The Moser Trick

An isotopy is now given simply by

p:RxM—M
(t,p) — ¥(t,0,p).

pt := p(t,-) is a diffeomorphism for each ¢ by part (a) of the claim above, and
po = ¥(0,0,-) = id.

Furthermore, p; satisfies equation 2.1 by virtue of ¢ — 1 (¢,0,p) being an
integral curve of v;. Note that if we attempted to define an isotopy via

p"(t,p) = ¥(t, to, p)

for some tg # 0, we would not have pgo = id, so by uniqueness of integral
curves, p is the unique isotopy corresponding to (v;);. Hence for M compact
we have a bijective correspondence between

{Isotopies of M} +— {Time-dependent vector fields on M}

(p)r < (v)e-

We now expand the notion of the Lie derivative to time-dependent vector
fields.

Definition 2.6 Let M a smooth manifold and v a (time-independent) vector
field on M with flow 6;. The Lie derivative by v is defined by

d

Ly QM) — QM), Lyw := 7

Ofw.
t=0

If vy is time-dependent, define similarly for ¢ its time-dependent flow

d

Ly, : QM) — QM), Lyw:= Ts

1/12‘570&0.

s=t

This is well defined as the flow v exists for s close enough to ¢. From this
definition we obtain the following identity:

Lemma 2.7 Let vy be a time-dependent vector field on a compact manifold
M inducing the unique isotopy p;. Let w € Q(M). Then %pfw = p; Ly,w.



2.2. The Moser Trick

Proof Recall that we defined pr = (), and we have ¥, 1) © Vi, 1) =

w(to,to) =id:
d . d .
% s=t P = % s=t 1/}(8,0)0‘)
d *
= (V(s5,0) © P(0,t) © Yir,0)) W
s=t
d * *
T ds|,_, PEt(sn®
= p: dS o 1/}?57t)w
- p;tkﬁvtwﬁ

where the second to last equality used that the pullback p; is linear and
independent of s. O

If now in addition w = w; is also time-dependent, we can prove the following:

Proposition 2.8 Let (wi)ier be a smooth family of d-forms, v, a time-dependent
vector field and p the isotopy generated by vi. Then we have

d * * dwt
Pt = P <‘C”Utwt + dt) :

Proof Recall that for a smooth real function f:R? — R, we have

d

Ly ==L

d
dt ds f(S,t)+ R

s

s=t

s=t

by the chain rule. Then for x € M and u,v € T, M fixed, we may consider
(S’ t) — (p:wt)x(u> U),

which is precisely a smooth function R? — R, and thus

d d

_ p* e
at’t T s

*
PiWs.
s=t

)
PsWt ds

s=t

By lemma 2.7, we have d% ‘S: , Pswt = pi Ly,wt, and by linearity of the pullback,

it follows that %}s:t piws = pi ddu? s=

;- Together, this is

d * * *dwt * dwt
Pt = P Ly,wi + py P <‘Cvtwt + dt> . 0

We are now able to state and prove a version of Moser’s theorem:



2.2. The Moser Trick

Theorem 2.9 (Moser) Suppose M is a compact manifold and wo, w1 two
symplectic forms on M such that

o [wo] = [wi] € Hp(M);

e For allt € [0,1], the form wy = (1 — t)wo + twy is symplectic.
Then there exists an isotopy p : R x M — M such that pjw; = wo for all
t €0,1].
Note that in particular, ¢ := p1 : (M,wy) — (M,w1) is a symplectomorphism.
The proof of this theorem uses the so-called Moser trick:

Suppose we have an isotopy as in the theorem. We can then define the unique
time-dependent vector field associated to p as discussed above:

Vg 1= % o pfl
a7
Recall that (v;); satisfies
d
— = Ut O py.
ds|._, Ps t O Pt

Hence by proposition 2.8, we have % prwi = pf (Loy,wr + %), and thus

d , dwy
TP =0 = Low + - =0 (2.2)

as py is a diffeomorphism.

If, conversely, we start with a time-dependent vector field v; such that 2.2
holds, we consider the isotopy p generated by v;; If M is compact, then p;
exists for all time ¢t € R, and satisfies %p’;wt = 0, which says nothing but that
piwy is independent of t. That is

prwt = powo = wo.
Hence to prove the theorem, one need only solve 2.2 for vy.

Proof In the case where w; = (1 — t)wg + twy, we have % = wi — wp. The
cohomology assumption [wg] = [w;] then tells us that w; — wp = du for some
p € QY (M).

Using Cartan’s magic formula, we have
Ly,wi = diy,wi + 1y, dwy,
~—
=0
where 1,, denotes the interior product and dw; = 0 as wy is symplectic and

thus, in particular, closed.
With this, equation 2.2 becomes

dw
Loy,wt + ditt =0 <= d,wt+du=0,
so it is sufficient to solve 12,,w; = —p. This we can do pointwise to obtain a
unique, smooth v;. ]



2.3. Conditions on the Area Forms

2.3 Conditions on the Area Forms

Remember we wish to prove that if for two area forms on our surface A, we
have [, a1 = [, a2, then (A, 1) and (A, az) are symplectomorphic. A is a
compact manifold and «; and a9 are symplectic forms, so if we can verify
the two conditions of Moser’s theorem, we will obtain the desired symplecto-
morphism. It is a matter of some computations to reduce the condition that
(1 — t)a + tag is symplectic for all ¢ € [0, 1] to the first condition; however,

proving
/alz/a2 — Jou] =[]
A A

will take some more refined arguments. Note that the other direction is easy:
If M is a compact manifold of dimension n and [wo] = [w1] € H" (M), then

w1 — wo = dp for some p € Q" 1(M), so
Whet ',& I\ Jog (Ow.wlﬂz') Z«'
,u

/wl—/woz/d,u:/ =0
M M M oM

by Stokes’ theorem and because M is assumed to have no boundary. Hence
Jarwr = [y wo.

2.3.1 The Sympleticity Condition

Proposition 2.10 Suppose wg and wy are two area forms on a surface M
which induce the same orientation. Then all convex combinations

wr = (1 — t)wo + twy
are symplectic.

Proof We prove that w; is an area form for all ¢ € [0, 1], whence it is sym-
plectic by proposition 2.3. So assume by contradiction that w; is not an area
form for some ¢ € (0, 1), so that there exists € M such that (w;), = 0. Then
0=(1—-1%)(wo)z + t(wi)g, sO

If (v1,v2) is any positively oriented basis of T,, M with respect to wg, we must
have (wp)z(v1,v2) > 0 as well as (w1)z(vi,v2) > 0 as they both induce the
same orientation. This contradicts the equation above. O

Lemma 2.11 Let wy and wy be symplectic forms on a surface M such that
[wo] = [w1]. Then they induce the same orientation on M.



















































2.3. Conditions on the Area Forms

Proof The cohomology assumption gives wy — wy = dpu for some pu € Q' (M).
Then du is not an area form since it is exact: indeed, Stokes’ theorem gives

/ du:/ pw=20
M oM

as M is assumed to have no boundary. Hence there exists x € M with du, = 0.
Choose a positively oriented basis (v1,v2) of T, M with respect to wy. Then

0 < (wo)z(v1,v2) = (w1)z(v1,v2) + dpg(v1, v2),
=0

which implies that also (wi)z(vi,v2) > 0. Thus (vq,v2) is also positively
oriented with regard to wq, so the two forms induce the same orientation. [J

Hence if we can prove that [, a1 = [, a0 =[] = [ae], this discussion
implies that all convex combinations of a; and a are symplectic.

2.3.2 The Cohomology Condition

Here, we finally show that [, oy = [, oo implies [o1] = [arg]. If this is the case,
we have seen that both area forms induce the same orientation, their convex
combinations are symplectic, and thus we get an isotopy and in particular a
symplectomorphism (A, a1) — (A, az). We follow [4] in this section.

Let us use the following notation:

ZM (M) ={weQ(M)|dw=0}

C

BMY(M) = {w € QM) | w = du for some p € Q"1 (M)}.

c

Then we have Q7 (M) = Z(M)/BZ(M). Next, note that for M a connected
manifold of dimension n, the map

f o
e

where H'(M) denotes the compactly supported cohomology of M, is well-
defined, linear, and surjective. It is well defined by Stokes’ theorem using the
same argument as in lemma 2.11, and surjective as we may pick any nonexact
form w € QF(M) and multiply it by a suitable cutoff function p such that
Jas pw = a # 0; then for any ¢, we have [, $pw = c.

We will need the following result on the cohomology of the sphere:
Proposition 2.12 H*(S™) = 0 for k € {0,n} and H*(S") =R for 1 <k <

n.

10



2.3. Conditions on the Area Forms

We refer to section 15.10 of [5] for a proof.

This, together with the properties of [ s discussed above, has an important
consequence:

Lemma 2.13 [, : H"(S") — R is a linear isomorphism.

Proof Since S™ is compact, H(S™) = H"(S™). As H"(S") = R, we can
view [ a as a linear map from R to R, so as a surjective linear map between
vector spaces of the same dimension, it must also be injective. O

Theorem 2.14 (Poincaré Lemma) The compactly supported cohomology
R, k=n

of R™ is HE(R™) =
0, else.

Proof

Step 1: We have H?(R") = 0 since if w € Q(R") is closed, it must be a
constant function. The only compactly supported constant function is the
trivial constant zero function, however.

Consider next the special case of H!(R). The map

/:Z§(R)—>R, wl—>/w
R R

is linear, surjective, and vanishes on exact forms, that is, on B!(R). Hence it
induces a map from H}(R) to R. We show its kernel is precisely B.(R), which
will imply that the induced map is an isomorphism.

So take fdt € Z}(R) for some f € C(R) with [, f(t)dt = 0. Then the
function g(t) = fjoo f(t)dt is smooth, compactly supported and satisfies dg =
fdt, hence fdt € BL(R).

Step 2: If n > 1, we show H!(R") = 0 by identifying R™ with S™ \ {p}
for some point p € S™. Thus any w € QL(R™) which is closed also defines a
closed 1-form in QL(S™) which vanishes on a neighbourhood U of p. By the
preceding proposition, H!(S™) = 0, so w = dn for some i € QO(S™) = C>(S™).
As w =dn =0 on U, this implies that 7 is equal to a constant ¢ on U, so that
i = n — ¢ defines a compactly supported function in Q2(S™\ {p}) = QI(R").
Hence dij = w as elements of Q! (R™).

Step 3: For any k < n, the argument is similar: take w € QF(R") closed,
which gives rise to a closed form w € Q¥(S™) with support in S \ U, where
U can be chosen to be a contractible neighbourhood of p. Then due to
H*(S™) = 0, there is n € QF~1(S™") such that dy = w. By the other theo-
rem known as Poincaré’s lemma, which states that closed forms are locally
exact on contractible neighbourhoods, we have that as dn vanishes on U and

11



2.3. Conditions on the Area Forms

U is contractible, n, too, is exact on U. Thus on U, we can write n = du for
some u € QF2(8™). Next, pick a cutoff function p with

Xv < p < Xxu

for y the characteristic function of the appropriate set and V' C U a closed
neighbourhood of p. Then 77 = n — d(pu) is a well-defined (k — 1)-form on S™
that vanishes near p, hence it defines a compactly supported (k — 1)-form on
QF1(S™\ U) = QF1(R") which satisfies dj = dn = w.

Step 4: Now for the case k = n > 2. We know that [,, : H?(R") — R is

linear and surjective, so we are left to show injectivity.

Let w € QF(R") such that [,,w = 0. We identify again R™ with S™\ {p}, so
we may consider the embedding i : R® < S™. Then the pushforward i,w is

an n-form on S”, and
Teld) = w=20
Sl n

implies by lemma 2.13 that i,.w = dn for some n € Q"~1(S™). The remaining
argument is the same as in the last case: pick a contractible neighbourhood U
of p on which w vanishes, deduce n = dy on U for u € Q"~2(S™), and apply a
cutoff function p to define 7 = n — d(pi). Then 7 € Q*~1(R™) and dij = w. [

We can now prove the theorem allowing us to conclude the classification:

Theorem 2.15 Let M an orientable connected manifold of dimensionn. Then
the map [, : H}(M) — R defined by

i

is a linear isomorphism. In particular, if [, wo = [}, w1, then [wo] = [w1] €

Proof Again, it remains to be shown that |  Is injective, that is,

we H} (M) suchthat/ w=0 = w=dn
M
for some n € Q2 Y(M). We argue by induction on the minimal number k
of open sets required to cover the support of w by a good cover, that is, a
cover of sets {U;} such that each U; is the domain of a chart o; which is a
homeomorphism from U; to R™. As we are working with compactly supported
forms, the minimal number of sets required will always be finite.

If £ = 1, then w uniquely defines an n-form o.w € Q"(R™), such that by the
Poincaré lemma, [p, 0w = [}, w = 0 implies [o,w] = 0 and thus [w] = 0.
Suppose now all w’ € Q7 (M) whose support can be covered by k—1 good sets

12



2.4. Conclusion

and which satisfy [,,w’ = 0 are exact, and consider w € QI(M) such that
Jyyw=0and {Ui,..., U} is a good cover of supp(w).

Let U := Ui-:ll U; and V := Uj. Pick a partition of unity {py, pv } subordinate
to the cover {U,V'} of supp(w), and define wy = pyw and wy = pyw.

Choose wp € Q7 (M) with support in U NV such that

/ WOZ/ wu,
M M

which is possible by the same argument as the one used for the surjectivity of
i} a- Then wy —wp has support in U, which admits a cover of k —1 good chart
domains, and [, wy —wp = 0, so by hypothesis, there exists ny € Qn=L(M)
such that

wy —wp = dny.

Using that 0 = [, w = [j,wr +wy <= [}, wo = [}, w0+ wu + wy gives

that
/wg—l—wV:/wo—wU:O,
M M

where wg + wy has support in V. Hence this form is also exact, so there is
ny € QP~1(M) such that
wo +wy = dny.

Thus we have wy = dny + wp and wy = dny — wp, whence we conclude

w=wy +wy =dnu +nv). O

2.4 Conclusion

Let us quickly recapture what we proved and what we started with: If we
have a compact, connected, orientable surface A with any area form «, then
i) 4« € R. We may multiply a by any nonzero scalar A such that Aa remains
an area form, proving that the correspondence

{a Area form on A} U {0} — R

al—>/a
A

is surjective. The main statement we proved was that it is also injective
up to cohomology: if ay,ap are forms on A such that [, a1 = [, ag, then
theorem 2.15 gives that [ay] = [ag] (since area forms are top-dimensional
forms). Moser’s theorem subsequently provides us with a symplectomorphism
v: (A1) = (A a).

13



2.4. Conclusion

Thus we have proven theorem 2.1, that we may indeed classify (A, «) by total
area. Hence for two surfaces with an area form, (A;, 1) and (Asg, ag), there
exists a symplectomorphism

@ : (Al,ozl) — (AQ,O[Q)

if and only if there is a diffeomorphism from A; to As, and in addition

/Ckl—/ Q9.
Ay Ao

14



Chapter 3

Generalization to Hamiltonian Circle
Actions

This chapter introduces the notion of hamiltonian actions and has as its central
object of study the triple

(A7 a) w)?

where (A, ) is again a compact, connected surface with area form «, and v :
S1 — A is a hamiltonian action. We will see that along with any hamiltonian
action of a Lie group G on a manifold M comes a smooth moment map
p: M — g*, and thus in the special case where G = S' acts on the surface A,
this can be seen as a map

w:A—R.

A being compact and connected, it follows that p(A) is a closed interval in R;
we will prove in this chapter that it is possible to classify (A, a, ) in terms of
area viewed as the length of this interval ¢(u(A)).

We will discuss first the case where ) is, in addition, an effective action. This
allows us to see (4, a, 1, 1) as a so-called symplectic toric manifold, for which
there already exists a handy classification theorem by Delzant. After giving
the constructive part of the proof, we will first find the symplectic toric man-
ifold corresponding to p(A) by following closely Delzant’s construction, and
then show it is equivalent to a more geometrically intuitive one, namely the
sphere S? being acted on by rotation with respect to the vertical axis.

In the end, we will treat the case where 1 is not effective and show that this
changes very little: in fact, the only difference will turn out to be that e acts
on A = S? by rotation by nf for some n € N.

15



3.1. Symplectic Toric Manifolds

3.1 Symplectic Toric Manifolds

We start with explaining the meaning of an action being hamiltonian and the
definition of a symplectic toric manifold, proceeding as in [2] in this section.

Definition 3.1 (Hamiltonian action) Let (M,w) be a symplectic manifold,
G a Lie group with an action ¢ : G — Diff(M). The action is said to be
hamiltonian if there exists a map

w: M — g*
such that the following two conditions are satisfied:

e For eachv e g, let u’ : M — R, p¥(p) := (u(p),v), the component of u
along v.
Let &, denote the fundamental vector field generated by the action, ex-
plicitly given by
d

v (p) = & o
t=

¢exp(tv) (p) :

In this case,
v

dp’” = —ie,w.

o The map p is equivariant with respect to the G-action on M and the
coadjoint action Ad* of G on g*: for all g € G, we have

frothg = Ady o p.

Then the tuple (M,w, G, n) is called a hamiltonian G-space.

Let us note the following consequence of this definition for the action restricted
to a Lie subgroup:

Lemma 3.2 Let G a Lie group and H a closed subgroup of G, and let g and
b denote the respective Lie algebras. Write i* : g* — b* for the dual map to
the inclusion i : h < g, that is, i*(¢) = poi for ¢ € g*. Suppose (M,w, G, 1)
is a hamiltonian G-space. Then the restriction of the (hamiltonian) G-action
to H is hamiltonian with moment map

iYopu: M —b*.
Proof For p € M, v € b, we have

(i o p)’(p) = (i*pu(p), v)
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3.1. Symplectic Toric Manifolds

Thus as p is a moment map, d(i* o p)? = —1¢g,,,w- But since we know that
the exponential map associated to H is the restriction to h of the exponential
map g — G, we see that

d d
éz(v) - % 0 ¢exp(ti(v)) - % 0 wexp(tv) = &,

where 1 denotes the action. Thus the fundamental vector field associated to
the action restricted to H is just the fundamental vector field &, for v restricted
to b, and hence the first condition is satisfied.
For equivariance, let g € H, p € M, and v € h:

(i* o ) 0y (p)(v) = p(tby(p)
= Ad* o u(p)(i(v))
= Adj o (i" o p(p)) (v). O

~—
—
~.
—
<
~—
~—

We will be concerned with the case where G is a torus of exactly half the
dimension of M, as we are interested in a surface and a hamiltonian S'-action.
In the following, we regard T" = (S')" and write elements of T" as tuples
[0] = (¢, ..., ¢e) for 0; € R/277Z.

We further have t" = R”, and we can identify R™ with its dual via the pairing
given by the standard inner product, which allows us to see the moment map
as a map

w: M — R™

Definition 3.3 (Symplectic toric manifolds) Let (M,w) a compact sym-
plectic manifold of dimension 2n. If we consider a hamiltonian action of T"
on M which is, in addition, effective, then for a choice of moment map u, the
hamiltonian T™-space (M,w,T", 1) is a symplectic toric manifold.

In the special case of hamiltonian torus spaces, the definition of a moment
map simplifies. The adjoint and coadjoint actions are trivial for a torus as it
is abelian; Then a moment map of an action of T™ is a map u : M — R"™ such
that the coordinate functions py satisfy

e T"-invariance: ux([0] - p) = px(p) for all [0] € T™ and p € M.

® i is a hamiltonian function for &, where ey is the k-th standard basis
vector of R", that is,

dp = —1¢,, W

From this description of the moment map, it follows that for any ¢ € R", the
map u + ¢ is also a moment map for the same action, and if we have two

17



3.2. Delzant Polytopes

moment maps p and fi, then d(u, — fi) = 0 for each k implies that the two
moment maps differ by a constant.

We give an example of a hamiltonian action which will be important later on:

Example 3.4 Let d € N and consider the action of T® on C% by component-
wise multiplication:

(€, e (21,0 20) 1= (€21, €2g).

This action is hamiltonian with moment map

1
2

Proof We compute for v € R™ 22 " the fundamental vector field &, at z =
(r1€r, ... rqed):

w(zi, ..., zq) (|21]?, ..., |2al*) + const.

d
gv(z) = % 0 wexp(tv) (Z)
_ i itvy itvg
_dtt:o(e N ) K-
d i(tv140 i(tvg+0q)
— % tio(rle(tvﬁ- 1)""’Td at+04 )
4 d d
= (ri)Or, + — (tvi + 64)0p,
2y "

d
= Z’Uz‘agi.
i=1

Hence &, = 0p,. We go on to compute for X a vector field on c

g, wo(X) = wo (D, X)

d
= anrz(agk)dﬁz(X) — T’ZdTZ(X)dQZ(agk)
i=1
= —deT'k(X)
= —%dr,%(X).
Hence the moment map has k-th component p(z) = %T%, which proves the
claim. ([l

3.2 Delzant Polytopes

As mentioned above, we will use the image pu(A) to classify (A, a,1). More
generally, for symplectic toric manifolds, the image of the manifold by the

18



3.2. Delzant Polytopes

moment map is always a so-called Delzant polytope, and it is in terms of this
type of polytope that symplectic toric manifolds can be classified.

First note that a polytope is the convex hull of a set of points in R™, whereas a
convex polyhedron is the intersection of a finite number of affine half-spaces
in R™. A theorem due to Weyl and Minkowski states that convex polyhedra
coincide with bounded polytopes, see for instance theorem 1.1 in [6].

Definition 3.5 Let A C R" be a polytope. A face of the polytope is a set of
the form

{r eR" [ f(z) = c}
for some c € R and f € (R™)* such that f(x) > ¢ for all x € A.

A wvertex is a 0-dimensional face, an edge is a 1-dimensional face, and a
facet is an (n — 1)-dimensional face.

Definition 3.6 A Delzant polytope A C R" is a polytope satisfying
o Simplicity: There are n edges meeting at each vertex.

o Rationality: The edges meeting at a vertex T are rational in the sense
that each edge is of the form T+ tuy fort >0 and uy € Z™.

e Smoothness: For each vertex, the edge vectors ui, ..., u, of edges meet-
ing at this vertex can be chosen to be a Z-basis of Z. Equivalently, this
means that if U = (u1|...|u,) denotes the n X n-matriz which has uy, as
its k-th column, we have det(U) = £1.

Thus if A is a Delzant polytope with d facets and v; are the primitive inward
pointing normal vectors to the facets (where v; € Z™ is primitive if it cannot
be written as v; = lu; for [ € Z and u € Z"), there are scalars \;, i = 1,...,d,
such that

A={zxeR"|(z,v) >N,i=1,...,d}. (3.1)

for some v; € R™", \; € R and d € N.

The following consequence of this definition allows for some more geometrical
intuition:

Lemma 3.7 Let A C R"™ a Delzant polytope. Then there are n facets meeting
at each vertex.

Proof Consider any vertex of A and let (uy,...,uy) a Z-basis of edge vectors
incident on this vertex. By the smoothness axiom and a change of basis, we
may assume (up, ..., u,) is the standard basis.

Then the primitive inward pointing normal vectors to the facets meeting at our
vertex are again the standard basis, as orthogonality to the facet determined
by the edge vectors uy, ..., U, ..., Uy, where the hat operator denotes omission,
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3.3. Delzant’s Classification

implies the normal can only be a multiple of u;. Requiring it to be primitive
gives that the inward pointing normal vector must be exactly u;, which proves
that there are n facets meeting at each vertex. O

3.3 Delzant’s Classification

In our setting where (A, a) is a compact surface with an area form (and thus
in particular a compact symplectic manifold by proposition 2.3), if we require
the S'-action to be effective, then up to a choice of moment map, we are
working with a symplectic toric manifold. These are, up to equivalence, which
is captured by the notion of equivariant symplectomorphisms, classified by
Delzant’s theorem.

Definition 3.8 Let (M;,w1,G, u1) and (Ma,ws, G, ua) hamiltonian G-spaces
and ¢ : M1 — Ms a smooth map. Then ¢ is equivariant if for all p €
My, g€ G

e(g-p)=g-¢(p).
Hence an equivariant symplectomorphism between symplectic toric manifolds
is a symplectomorphism in the sense of definition 2.2 satisfying p([0] - p) =

(0] - ¢(p)-
Theorem 3.9 (Delzant) There is a bijective correspondence between

Symplectic toric manifolds Delzant polytopes
up to equivalence up to tramslation |

For a toric manifold (M?",w,T", ), the corresponding polytope is given by
u(M).

For a complete treatment of the proof, we refer to the original paper by Delzant
[7]. We prove the surjectivity statement below, following chapter 29 of [1].

Notice that in the case where we consider a hamiltonian S'-action on a surface,
the moment map p is in particular a smooth map from M to R. Hence the
Delzant polytope corresponding to the surface will be an interval; Our goal in
the following will be to construct the symplectic toric manifold corresponding
to this situation. According to the theorem, this manifold will be unique
up to equivariant symplectomorphism. For this, we shall give the general
construction of the symplectic toric manifold corresponding to a given Delzant
polytope.

The main tool used in the construction is the technique of symplectic reduction,
which is a theorem independently proven by Marsden with Weinstein, and
Meyer:
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3.3. Delzant’s Classification

Theorem 3.10 (Marsden-Weinstein, Meyer) Let (M,w,G, u) a hamilto-
nian G-space for a compact Lie group G. Let i : p=*(0) — M denote the
inclusion and assume that G acts freely on u~1(0). Then

(a) the orbit space Myeq = 1~ 1(0)/G is a manifold.

(b) pr: pu=t(0) = Myeq is a principal G-bundle, where pr denotes the canoni-
cal projection.

(¢) there is a symplectic form wyeq 0n Myeq such that i*w = prwyeq.

For a proof, see section 23 of [1]. Note that as pr is a surjection, pr* is injective,
and thus wyeq is the unique two-form on M,eq satisfying (c).

3.3.1 Delzant’s Construction

Let A be a Delzant polytope with d facets. We consider A C (R™)* for
convenience, and consider the normal vectors to the facets to be in R™. Let
v € Z", 1 =1,...,d be the inward pointing primitive normal vectors to the
facets. Then for some A\; € R, we can write

A={zxeR") | (z,v)>N,i=1,...,n}.
Let e; denote the standard basis vectors of R™, and consider

7: R - R

€; — ;.

Claim 1: The map 7 is surjective and maps Z% onto Z™.

Hence 7 induces a surjective map 7 : RY/(27Z%) — R"/(27Z"), such that for
x € RY, we have 7(z + 27Z%) = #(z) + 27Z". Identify R¥/(27Z*) with T*.

Now let N = ker 7w and n the Lie algebra of N. Then N is a closed subgroup
of T of dimension d — n, and hence itself a torus. Let i : N — T¢ denote
the inclusion and identify the Lie algebras of T¢ and T" with R% and R™,
respectively. Then we have an exact sequence of tori

1 y N —» Td T, T 1

which induces the exact sequence of Lie algebras

0——n—> R T4 R"

~
o

with the dual sequence

™ i*

0 —— (R")* ~— RY)* —L— n* —— 0.
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3.3. Delzant’s Classification

Now consider C?% with its standard symplectic form wy = % 22:1 2k N\Zk, along
with the action of T¢ given by

(e, .. ef) (21,0 ,29) = (€2, ... eldzy).
According to example 3.4, this action is hamiltonian with moment map
p:Cl— (RY)*
1 2 2
(21, -.,2q) —> 5(]21| s vy |zal?) + const.

We choose the constant to be (A1,...,Ag). Next, consider the restricted action
of N € T% on C?. According to lemma 3.2, this action is also hamiltonian
with moment map

i o u,

where i* : (t9)* — (n?) is the dual map to the inclusion i : n — t?. Consider
Z = (i* o u)~1(0). We claim:

Claim 2: Z is compact and N acts freely on Z.

If this is true, the conditions for the Marsden-Meyer-Weinstein theorem are
met and we obtain the reduced space Ma = Z/N, along with a symplectic
form wa such that if j : Z < C? is the inclusion and pr : Z — Ma is the
projection, then prfwa = j*wp.

The next section will prove the claims made above and introduce the hamilto-
nian action making (Ma,wa, T™, ua) into a symplectic toric manifold.

3.3.2 The Action on the Reduced Space
We start by reviewing the claims made in Delzant’s construction.

Claim 1: The map 7 : R — R" is surjective and maps Z? onto Z".

Proof The argument is very similar to that of lemma 3.7. Fix a vertex of A.
By lemma 3.7, there are n facets meeting at this vertex, which are determined
by the n — 1 edge vectors they meet; thus if the facet meets uy, ..., %, ..., Uy,
after a change of basis transforming uq,...,u, into the standard basis, we
see that the inward pointing primitive normal vector to this facet is just wu;.
Hence the set of primitive inward pointing normal vectors can by this change
of basis be assumed to be the standard basis, proving the claim. ]

Claim 2: N acts freely on Z, and Z is compact.

Proof To show that Z is compact, it suffices by Heine-Borel to show that Z
is closed and bounded. It is clearly closed as it is the preimage of {0} by a

/

continuous map, and we show that u(Z) = 7(A) =: A”:
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Lemma 3.11 Lety € (RY)*. Then
ye A < yeu(2).

Proof y is in u(Z) = pu ((i* o ) ~*(0)) if and only if

1. y is in the image of p,

2. 7"y = 0.
Using that p(21,...,24) = 3(|z1/% ..., zal?) + (A1,..., Ag), We see that the
first condition is equivalent to

<yaek>2)‘k k=1,...,d,
Using the dual exact sequence, the second condition is equivalent to y being
in the image of 7*, that is
y=7"(z)

for some = € (R")*. So if y = 7*(x), we have

(y,ex) > M, Vb = (7"(x),ex) > A, VE
=  (x,7(er)) > Mg, Vk
= (x,vg) > g, VE
<~ 1z €A
We conclude y € u(Z) < y e 7*(A) = A’ O

Note that p is a proper map, that is, if C C (R%)* is compact, then p~(C)
is compact. Indeed, if C' is compact, then C = C] x ... x Cy for C} compact
subsets of R*, and thus ;. '(Cy) = {22 — A\, | |2|> € Ck}. This is bounded
as Cy is bounded, and hence p~*(C) is a product of bounded sets. It is also
closed as p is continuous, so it is compact by Heine-Borel.

Using this and the lemma we just proved, as A’ is compact and u(Z2) = A/, Z
must be bounded, and hence compact.

In order to use the Marsden-Weinstein-Meyer theorem, we still have to prove
that N acts freely on Z.

So pick a vertex 7 of A and let I = {ki,...,k,} denote the set of indices
for the n faces meeting 7. Pick z € Z such that pu(z) = 7*(7), which exists
by lemma 3.11. 7 being a vertex means that it is characterised (as seen in
definition 3.5) by n equations (T, vx) = A for all k € I. This gives

<T77~r(ek)> = Ak

(7(7), ex) = Mk

(n(2), er) = A

the k-th coordinate of p(z) is Ag
%|Zk|2 + A = Mg

2z, = 0.

<7-7 Uk> = >\k

[
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3.3. Delzant’s Classification

Thus these z are precisely those whose coordinate entries for the coordinates
in I are zero and whose other entries are nonzero. We may assume without
loss of generality that I = {1,...,n}. Then the stabilizer of z is

(’]I‘d)z = {(eiel, . ,eie", 1,...,1) e ’]I‘d},

Letting (R?), = {(21,...,2n,277Z,...,27Z) C R%}, we have by claim 1 that
the restriction 7 : (R?), — R™ maps ej,...,e, to a Z-basis v1,...,v, of Z".
Hence projecting to tori, we must have that 7 : (T¢), — T" is bijective as
a group homomorphism. Recalling N = kerr for m : T¢ — T", we conclude
that N N (T?), = {1}, so N, = {1}. We have thus shown that all stabilizers
of the action by IV at points being mapped to vertices are trivial.

If 2/ is another point in Z which does not map to a vertex, then N,/ is con-
tained in N, for some z which does map to a vertex because then some of the
equalities characterising p(z’) become inequalities, so the k-th coordinates of
p(2") do not have to be zero, which puts more restrictions on the stabilizer
(T?),. This proves that indeed, all stabilizers are trivial and the action by N
is free, proving claim 2. O

Proposition 3.12 The reduced space Z/N inherits a hamiltonian T"-action
with a moment map pa such that ua(Z/N) = A.

Proof As in the proof just above, pick z € Z such that p(z) = 7*(7) for 7 a
vertex of A. We have seen that the restriction 7 : (T¢), — T" is a bijection,
so let o be its inverse. Then o is also a right-inverse of 7 on the whole of T¢,
so from the exact sequence

I — N —5 T =T ——1

we obtain an isomorphism (i,0) : N x T" — T¢.

We can now endow Z/N with the action induced from the T" factor above. In
precise terms, we define for [0] € T, z € Z and pr: Z — Z/N the projection

[0] - pr(2) == pr(a([0]) - 2),

where the action on the right hand side is the standard action on C? by T¢.
If w=g-z for some g € N, then o([0]) -z = o([0])g - w = g - (o([0]) - w) as
T? is abelian, so o([6]) - z and o([f]) - w are in the same N-orbit, hence this
action is indeed well-defined. Next, consider the diagram

7 « J s Cd K N (]Rd)* ~ ot @ (Rn)* o* (Rn)*

T
lpr ///’///

Z/N ————————————————— T opa
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Here, j is the inclusion, and (R%)* 22 n* @ (R™)* uses the isomorphism (i, o)
from above at the level of Lie algebra duals. From this we obtain that o* is
just the projection onto the second factor.

As 4 is a moment map for the T%action, it is in particular N-invariant, so
the composition of horizontal maps in the diagram is constant along N-orbits.
Thus we obtain a moment map pa for the T™-action such that the diagram
commutes, that is

[in O pr = 0% 0 o]
Finally, we have
ua(ZIN) = pa(pr(Z)) = " o o j(2).
Then recall u(j(Z)) = u(Z) = 7*(A), and o* o 7 = id to obtain
oc*opoj(Z) =007 (A)=A. 0

We have thus constructed from a Delzant polytope A the symplectic toric
manifold (Ma,wa,T", ua). For more details, for example a proof that p(M)
is always a Delzant polytope and in addition just the one such that following
the construction above, we recover M, see chapter 29 of [1].

3.4 The Case of Surfaces

3.4.1 The Manifold

Let us now return to the setting of a compact, orientable surface A with a
hamiltonian S'-action. As we have seen, a choice of area form « defines a
symplectic form on A, and thus for a choice of moment map p of the hamil-
tonian action, (A, a, S', i) is a toric manifold. As y: A — R is smooth, it is
in particular continuous, and thus its image p(A) is an interval in R, which
we can take to be [0, 7] for some r > 0 since classification in terms of Delzant
polytopes is only up to translation.

We construct the toric manifold corresponding to A = [0,7]. The primitive
inward pointing normal vectors to the facets are in this case v; = v and
v9 = —v for v = e; = 1, the standard basis vector of R. Written in the terms

of equation 3.1, the polytope becomes
A= {ﬂl‘ eR | <$7 _U> > -, <JJ,U> > 0}7
so A1 =0and Ay = —r.

The map 7 : R> — R maps e; — v and ey — —v, so it is given by 7(t1,t2) =
t1 — to and thus its kernel is span(ej + e3). The induced map is thus given by

m((t1,t2) + R?/21Z2) = 7 (t1, t2) + R/277Z = (t; — t2) + R/27Z.
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v (Y
1\ 2

0 r

Figure 3.1: A with its inward pointing normal vectors

Using the identification ¢ ~ e for T = S! = R/27Z, we can write this as
r(et, git2) = eitre=ite,
or simply, for (01,6,) € T?
m(01,02) = 610, "
Thus the kernel of the induced map 7 is the diagonal subgroup
N =1{(0,0) eT>= 8" xS |6¢c[0,2m)}.

We can thus identify N simply with S'. Its Lie algebra is simply the kernel
of 7, which is n = {z(e; + e2) € R? | € R}, which we can identify with R.

We now compute the dual maps 7* and i*. As R™ and (R™)* are isomorphic
under the pairing given by the standard inner product, every element of (R™)*
is a map of the form (-, ) for some € R”. Hence 7*((-,7)) € (R?)* is given
by
fr*(<'7$>)(av b) = <ﬁ-(a7 b)v x> = (a,x> - <b7x> = <(CL, b)v (xv —$)>
for (a,b) € R?. Thus under the identification of R™ with its dual, this becomes
T (x) = (2, —x)

for z € R*.

Similarly for i*, we have for (-, (z1,72)) € (R?)* and y € n that

i (Cs (z1,22))) () = (i(y), (21, 22)) = 21y + 22y = (Y, 71 + T2),

and hence
%
i*(z1,22) = x1 + 2.

This gives us the exact sequences

for the sequence of tori,
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B

0 n : R2 y R 0
r—— (z,7)

(37175172) 21 — 22

for the sequence of Lie algebras, and

for the dual sequence.

As in the general construction, we consider the action of T? on (C?,wp) given
by
(67’91,6102) . (21,2’2) — (61012’1,62022’2)

with moment map
1
,U(Zb Z2) = 5(’21|2, ’22|2) + (07 _T)'

The action of the diagonal group N on C? is thus given by e - (2, z9) =
(€921, € 2) and, using lemma 3.2 and the definition of i* computed above,

has moment map

- 1
(i* o p) (21, 22) = 5(121\2 + |zf?) — .
Its zero level is
Z = (i* o ))71(0) = {(21,22) € C* | |a1]* + |22|* = 21},

which can be seen to be the (real) sphere S3(v/2r) with radius v/2r. Hence
the quotient Z/N is the quotient S3/ ~ by the equivalence relation (21, z3) ~
(w1, we) <= (z1,22) = Mw1,ws) for some A\ € S', which is diffeomorphic
to the complex projective space CP!. This uses the description of CP" given
as in lemma 3.15, together with the fact that S3(y/2r) is diffeomorphic to the
unit three-sphere simply by the map sending z € S® to v/2rz.

3.4.2 The Action

Recall that the action of T™ on Z/N is given by
[6] - pr(z) = pr(a([0]) - 2),
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where o is the inverse of the bijection 7 : (T%), — T? for z € Z such that
p(z) = 7*(7), and 7 is a vertex of A.

So for A = [0,7], let us pick 7 = 0. Recalling 7*(z) = (2, —z), this gives

~ %

7*(0) = (0,0). Our expression for y is
1
M(zla ZQ) = 5(’21‘27 ’22‘2) + (07 _T)a
so if p(z1, 29) = 7*(7), we must have z; = 0 and, as Z = S3(v/2r), 2o = V2re?
for any 6 € [0,27). Let us choose z = (0,v/2r). The stabilizer is
(TZ}Z = {(6197 1) S Tz}v

and thus the restriction 7 : (T?), — S! is a bijection. Recall that 7(6,602) =
0105 1 so that its inverse is simply

o: 8" —T?
0

e —s (eie, 1).

Now we can write the action explicitly as
e? (20 : 2] = [0 : 21].
The moment map is then ua opr =oc*opoj, so
pa(lzo - z1]) = o™ ((3l20l% 5l21|* = 1)) = 3l20/*

Note that as we take (2o, 21) € S3(v/2r), |20|? ranges in [0, 27], so that indeed,
the image of CP! by ua is A = [0,7].

3.5 Complex Projective Spaces

In order to determine the symplectic form induced by the symplectic reduction
of the zero level Z by N above, we recall some basics related to projective
spaces and their natural smooth structure. First, we recall some equivalent
ways to define CP", and then we see how CP" can be obtained by symplectic
reduction, thereby endowing it with a natural symplectic form.

Definition 3.13 The complex projective space CP" is given by (C"H \ {0}) / ~,
the equivalence relation being defined by

(204 2n) ~ (Az0y ..., Azp)
for X € C and (29, ..., 2,) € C"1\ {0}.
We denote a point in CP™ by

[(20y.--y2n)] =1[20 1+ 2]
for z; € C and not all z; equal to zero.

Informally, this describes the set of complex lines in C**1 through the origin.
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The following lemma describes the smooth structure on CP™. For a proof, see
for example [8].

Lemma 3.14 Fori=0,...,n, define the sets
Ui:={[z0:...: 2, € CP" | 2z; # 0},
together with the maps
@i U; — C" = R*™"

[zo:...:zn]»—>—‘(20,...,21',...,zn),
(2

where Z; denotes the omission of z;.
Then {(¢i,U;) | i =0,...,n} is a smooth atlas on CP".

It is a standard result that this definition of CP" is equivalent to the complex
n-sphere, where its antipodal points are identified. Let us phrase this in the
following lemma, and refer to [9] for a proof.

Lemma 3.15 Let S?"t! denote the real unit sphere and identify it with the
complex unit sphere S™ C C"t1. Define an equivalence relation on S*" 1 by

(20,1 2n) ~ €%(20,...,2n), 6 €][0,2m).

Then S?"t1/ ~ is diffeomorphic to CP".

Note that this implies that CP" is a compact manifold. The above equivalence
relation could also be seen as arising from an action of S', which will guide
us into seeing how CP™ can be obtained by symplectic reduction. This way,
we will obtain a symplectic form by the Marsden-Weinstein-Meyer theorem.

Proposition 3.16 Consider the action of S' on C"*! given by

e (20, .., 2) = (eP2,...,eY2).

This action is hamiltonian with moment map p : C"t1 = R,

n

1
w(zoy .y 2n) = 5 Z;) |2;]? + const.
J:

Proof The standard symplectic form on C"*! in polar coordinates is wy =
Z?:o ridr; A df;. So for v € R 2 T3S and z = (20, ..., 2,), we compute the
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3.5. Complex Projective Spaces

fundamental vector field

d
&(z) = pn exp(tv) - (20, .-, 2n)
t=0
d . . . .
= = (emroe’eo, .. ,e’tvrnew")
t=0
"/ d 9
= — i = — 0; +tv) —
jz% <dt t()r]> 90; z+ dt t:O( i) or|,

n

0
22057].

J=0

z
Letting v = 1 and X any vector field on C"*1:

n n 8
7=0 k=0

= zn:Tj d?“j <Zn: 39k> dQJ(X) - T‘]d’l”](X) d9] (zn: 89k>
7=0 k=0

k=0

=0 =5,

= — Z Tdej(X)
7=0

j=0
From this and p = %Z?:o r? + const., it is immediate that dp = —1¢,wg. O

Thus (C"*, wg, ST, i) is a hamiltonian S'-space and S! is compact. If we
choose the additive constant of the moment map to be —%, its zero level set
is

1 — 1
—1 _ +1 12 - _ Q2n+1
p(0)={zeC" |2j§_0!zgl 2—0}—5” :

For any ¢ € S', we have that (2, ..., 2,) = (20,..., 2n) implies zp = ... =
2n, = 0, so the action is free on C**1\ {0} and thus in particular on p~1(0) =
S2n+1 Hence the conditions for Marsden-Weinstein-Meyer are satisfied; the
quotient $?"t1/S1 is a manifold, and the orbit equivalence relation of this
quotient is just the same as the equivalence relation from lemma 3.15, hence
the reduced space is just CP". We take this as the definition of our symplectic
form on CP™:

Definition 3.17 The Fubini-Study form wpg on CP" is the symplectic
form induced by symplectic reduction of C"t by S1 with respect to the hamil-
tonian action and moment map described in proposition 3.16.
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3.6. The Case of Surfaces - The Area Form

Equivalently, if w : S?"*1 — CP" denotes the projection and i : S***1 — Cnt!
the inclusion, wpg is the unique symplectic form on CP" satisfying

ﬂ*wFS = i*CU().

3.6 The Case of Surfaces - The Area Form

We have defined the symplectic form induced on CP" seen as the quotient
S2n+1/8% to be the Fubini-Study form. Note carefully, however, that both
spheres in this quotient are of unit radius, whereas if we recall the moment
map we obtained by Delzant’s construction,

- 1
(1" 0 (21, 22) = |z + |22]") = 7,

we saw that its zero level set Z is the sphere with radius \/ﬂ, denoted 53(\/?).
During the symplectic reduction, we considered the equivalence relation aris-
ing from the subgroup N, which in this case was just S' with the action
e (21, 22) := (€21, € 2y), whose orbit equivalence relation is precisely the
one used in the characterisation of CP" as given in lemma 3.15. Let us thus in-
vestigate how the radius of the sphere affects the symplectic manifold obtained

by reduction.
Consider S?"*1(a) for general a > 0 and n € N. We write as usual $?"1(1) =
S2n+1 Then of course, S?"*! is diffeomorphic to S?"*1(a) by
@ . SQn-‘rl SN SQn-l—l(a)
z—> az.

This map induces a diffeomorphism ¢ such that the following diagram com-
mutes:

§2n+1 ¥ §2n+1 (a)

| !

S2n+1/sl ¥ 52n+1(a)/5«1

So both quotients are diffeomorphic to CP", but ¢ may not be a symplecto-
morphism.

Let wp denote the standard symplectic form on C"*! restricted to S***1(a)
and S2"t1 respectively. Compute for z € S?"*! and w,v € T, 527!

(P"wo)z(u, ) = (wo)az (DP(2)[u], DH(2)[v]) = (wo)az(au, av),

so by bilinearity of wp, we see that @*wy = a?wp. This implies that the
symplectic form obtained by reducing the sphere S?"*!(a) is just a? times
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3.7. Equivalence to Spheres

the symplectic form obtained from reducing S$?"*!. So letting w denote the
symplectic form on S?"*1(a)/S', we have

W = CLQWFS.

Thus in our case where a = v/2r, we have that the symplectic manifold (A, «)
with hamiltonian S!-action has to be

(A, ) = (CIF’l, 2r wrg)

with the action given by

et? . [20 : 21] = [ewzo s 21,

which completes our classification.

3.7 Equivalence to Spheres

In this section, we exhibit an equivariant symplectomorphism from the toric
manifold obtained above to one allowing for more geometric intuition. Our
strategy is showing that CP! is diffeomorphic to S?, where we adapt an ar-
gument from [10], checking what the symplectic form must be on S? for our
diffeomorphism to become a symplectomorphism, and finally defining the ac-
tion on S? to be such that the symplectomorphism becomes equivariant. We
will carry out the proofs for the sphere with unit radius first and generalize in
the end.

3.7.1 The Manifold

Proposition 3.18 CP! carrying its standard smooth structure is diffeomor-
phic to S?, the charts on S? being given by stereographic projection.

Proof We first prove that replacing the chart ¢y from lemma 3.14 by @q :
Uy — C, given by

gol[z0: 21]) = 2125 1,
induces the same smooth structure on CP'. For this, we need to prove that
{¢0,¢1,Po0} is still a smooth atlas, that is, that all transition functions are
smooth. Two quick computations show

Poo(2) =00 @y (2) = po([l:7]) =%,

as well as

pro(2) =109y (2) = pr([l: 7)) =

N =
N
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3.7. Equivalence to Spheres

Essentially the same computation shows p; 5 = pg; and pyg = pgo. Identify-
ing C = R? via the canonical isomorphism, the transition maps become

Poo(To, r1) = (w0, —T1)

i) I
017(’)(-%0,1’1) = < > )

Y
x%—l—x% x%—l—x%

both evidently smooth.

Recall at this point the standard smooth structure on S?: Define Viy = 52\
{xn} and Vg = S?\ {zg} for zx = (0,0, 1) the north pole and x5 = (0,0, —1)
the south pole. The charts are given by
1
1-— I3
1
14 x5

Yo : Vv — R?, Po(x1, T2, 23) = (21, 22)

U1 Ve = RE (g, m2,23) = (71, 22),

and both transition functions are

"Z’Ooﬂ’ll(mo?xl)=wlowol<mo,m1>=< TE R )

2 20 .2 2
Ty + o] xH+ ]

The reason we swapped ¢o by @¢ before was to achieve the same transition
functions for both atlases:

pro@y =vroty . (*)
This enables us to define the map
¥ :CP' — 52

1! (@1, m2) > Uy (w1, 22)

o (w1, 22) = 4y (@, @),
with inverse

¢1:.52 — CP!
Vo M, m2) — @y (w1, 22)
vr

x1,x9) — gol_l(xl, x2).

¥ is well-defined because of (x): if gy (z1,22) = @1 *(y1,y2) for some (1, 22)
and (y1,%2) in R2, then this is equivalent to

(21,22) = o 0 @7 (Y1, ¥2)
= g 0y (Y1, y2)
= Yy (a1, 22) = ¥y, v2).
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3.7. Equivalence to Spheres

That is to say that the following diagram commutes:

CP! v 52

X % (3.2)

RQ

fori =0,1. As V¥ = 1/11._1 o ; is a composition of diffeomorphisms and the
transition functions are smooth, it is a diffeomorphism, too. 0

3.7.2 The Area Form

Note that on the sphere S? with unit radius, the standard volume form vol =
dz A dy A dz of R3 induces an area form: M := B1(0) = {v € R? | ||o]| < 1} is
a manifold with boundary S?, and restricting the standard volume form gives
a volume form on B;(0). Hence vol induces an area form on 0B;(0) given
by 2x (vol) for X the section of TM|gy; which sends p = (z,y, z) € S? to the
outward-pointing normal vector (zd, +yd,+29,), € T,R3. Denoting the form
on 5% by o, we compute for Y and Z vector fields

dz(X) dx(Y) dz(2)
o(Y,Z) =wxvol(Y,Z) =det | dy(X) dy(Y) dy(2)
dz(X) dz(Y) dz(2)

=dz(X) -dyndz(Y,Z) —dy(X) -de Ndz(Y, Z) + dz(X) - de AN dy(Y, Z)
= (xdy Ndz + ydz N dzx + zdx N dy) (Y, Z).

By construction, this is an area form and thus a symplectic form on S?. To
give a more handy characterization, we pull it back to R? by the following
parametrization:

d: R — 52

V1 — h2cos(6)
(0,h) — | V1 — h2sin()
h

for h € [-1,1] and € € [0,27). This can be seen as computing o in polar
coordinates:

O*dx = 0p(z o ®)df + Op(z o ©)dh

— /1 RZsin(0)do —
®*dy = /1 — h?cos(0)df —

®*dz = dh.

h
———cos(6)dh,
V1 —h?

\/1h7h2 sin(6)dh,
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3.7. Equivalence to Spheres

Thus for the wedge products, we obtain

O*dy ANdz = /1 — h2cos(0)dd A dh,

®*dz Ndx = /1 — h?sin(0)db A dh,

d*dx A dy = hsin?(0)dO A dh — hcos®(6)dh A db
= hdf A dh.

Inserting this into ®*o gives

®*o = ((1— h?) cos®(0) + (1 — h?)sin®(0) + h?) do A dh
= df A dh.

This shall be our definition for the standard symplectic form on S?:

Definition 3.19 We call wgye := o the FEuclidean symplectic form on
S2. We will from now on suppress ®* from our notation and just write

WEud = d0 A dh.

So far, we know that CP' is diffeomorphic to S2, and we have natural sym-
plectic forms on each manifold. The next few propositions illustrate the close
relation between (C]P’l,wps) and (S%, wpye) as symplectic manifolds. First,
we give a concrete description of wpg on its first coordinate chart:

Lemma 3.20 Let @, Uy as in lemma 3.18 the first chart on CP', that is,
Up = {[z0 : 21] € CP | 29 # 0} and @o([20 : 21]) = 2125 " On this chart, we
have

dx N dy
Wpg = —
Fs (14 22 4 y2)2
Denote wpg = % Then this is to say that ¢(—wrs) = Wrs.

Proof We use the uniqueness of the induced symplectic form on the reduced
space by the Marsden-Weinstein-Meyer theorem 3.10. Recall how we obtained
CP™ as the quotient S?"*1/S! and, for n = 1, the following diagram:

g3t 2

K

CP' -2, C 2 R?

Hence ¢f(—@rs) = wpg if and only if (¢g o m)*@ps = —i*wp for wp the
standard symplectic form on C2.
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3.7. Equivalence to Spheres

We work in polar coordinates. Then we have wg = rodro A dfg + ridry A dby,
and for (zg, z1) = (roe’®, r1e) € 3

r .
/lzb(ZO’Zl) = (@0 o 77)(2:0,2,’1) = 5671(91*90) c C
~ <Tl cos(Go — 91)7 L sjn(eo — 91)> — (.%', y) c RZ'
To T0

Then abbreviating A = 6y — 81, we have

¥ (dx) = Oy, (z 0 )dro + 9, (x 0 1)dOy + Or, (x 0 P)dr1 + Dy, (z 0 ¥)dby
= —% cos Adrg — :—(1) sin Adfy + % cos Adrq + :—(1) sin Adf,
0

= LcosA (dm - %dr0> + I sin A (d6y — dby),
Y (dy) = —:—é sin Adrg + :—(1) cos Adfy + % sin Adry — % cos Adb
= L cos A (dby — dbr) + % sin A (drl - :—édr()) .
Thus we obtain for the wedge product
U (da A dy) = 5 cos” A (dr1 A dfy — dry A dfy — Tdrg A dfy + g A d91>
+ S sin A (d6y Adry — Edoy Adro — dfo A dry + Edfy A dro )
= % (dry A dfy — dry A d9y — Thdro A dBo + Tdro A dfy )
For the denominator in the expression for Opg, we have
WL +a? 42 = (L4 (o) + (you)?)’ = (1+ 3P,

so that finally,

o/~ T 7‘2
P ((,UFS) = ﬁ <d7"1 A dby — dry N dfp — %d?“o A dby + %d?’o VAN d91) .

1
(3.3)
This is now a form on S2 C C2, so the following identities hold:

L2 +r?=1,
2. rodrg + ridr; = 0.

The second identity is obtained by applying the exterior differential to the
first one. Using this, 3.3 simplifies to

’lb* (CDFS) = r%rldrl Adby — 7“87’1617“1 A df — T‘%Tod’r’o A dby + T%ngro Adbq1
—— ——
:—ngfo :—r:fdm
= ridry A d@l(—Tg — T%) + rodrg A de()(—?“g — T%)
= —wo_ |:|
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3.7. Equivalence to Spheres

The following diagram describes our situation:

(C]Pla WFS) (52) wEucl)
b
(R% Ops) [-1,1) x [0,27)

An equally lengthy but mostly identical computation shows that pj@rps =
WFEFS.

As a next step, we will pull back @pg to [—1,1) x [0,27) and see that we
essentially obtain wgy;.

Proposition 3.21 wpg = %wEucl for the Fubini-Study form on CP!.

Proof Recall the parametrization of S? from the beginning of the section,
given by

$:R* — §?
(0,h) —> (\/ 1 —h2cos(f),\/1— h?sin(6), h) .
Composing this with the stereographic projection

Yo : S2\ {zn} — R?

1
(@,y,2) — —(2,9)
gives the map
po : R? — R?
1—h?

0)
0,h) — | L=h cos( .

(6 2) (vll_,gﬂ sin(6)

1—h? 1+h
A—m)? — 1-h

The rest of the proof is a matter of computig pjwrs. Soset A :=

and note VA = Vlljf . Then

VA 1 1—-h+1+h 1
oh — 2y/A (1-h? VA1 -h)?*

Using this, we compute

0
%(aﬁ o po)dl + %(1‘ o po)dh
cos(6)

— VAsin(@)do + ) g,
R TTRAY

pod =
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3.7. Equivalence to Spheres

and similarly
sin(6) dh
VA(1 - h)?

Hence pj(dz A dy) = —353d0 A dh + 259 dh A df = 435 We also have

et e = (1 ) = (125)

so inserting this into the expression for Wpg yields

pidy =V Acos(0)df +

* ~ (1 - h)2 1
=——“-dhANdf = —- .
PoWFS 41— h) 4 W Buc
The sign change occurs as vy is orientation-reversing. If we now apply ¢,
lemma 3.20 tells us that we obtain precisely wrg. O

Again, we could carry out a very similar computation for ¢; and obtain that
PiWFs = iw Eucl- We chose to work out the case for ¢y and ¥y to emphasise
the occurring sign change due to the charts being orientation reversing, which
does not happen for ¢; and ;. Let us summarise these results in the following
lemma:

Lemma 3.22 Let @o, o1 and 1o, 1 the charts on CP* and S2, respectively,
as in proposition 3.18. Let p; = 1; o ®. The following hold:

1. piiors = —3WEudl;
2. PiOFS = WBud;
3. PyWrs = —WFs;
4. PIWFS = WFS.

Proof We have proven 1. and 3. in the last two propositions, 2. and 4. are
analogous. O

Hence our commutative diagram becomes

cpt — ¥ 5 §?

R? <—— [-1,1] x [0,27)

The relations from lemma 3.22 then tell us that if we simply equip S? with
inuCh

ddNndh .
= Po(—wrs) = wrs
by the previous lemma on Uy C CP!, and similarly on U;: Hence U is a
symplectomorphism.

\I’*inucl = @6([)61)
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3.7. Equivalence to Spheres

3.7.3 The Action

To see what the action we obtained corresponds to on S?, we must define it
such that our symplectomorphism ¥ becomes equivariant (as else the resulting
toric manifolds would not be equivalent). That is, we define

e U([z0: 21]) = U([e?2 : z1]).

To see how this acts concretely on S?, we find an explicit expression for W.
We work on the charts @g and vy, but the case for ¢; and ; is analogous.
Consider the diagram from before:

cpt ——¥ g2

R? ¢——— [~1,1) x [0,2n)

The diagram commutes by our definition of ¥ = 1, Lo@y on Uy and p = ¢go®.
We shall regard R? 22 C here and work in polar coordinates. Recall that

p:[-1,1) x [0,27) — R?

(h,0) — |V = oosl)) e
’ [Lth g S Vi1-h
7 sin(0)

2
i0 r¢—1
— | —=——, 0.
e <7“2—|—17 >

Lo @g, and using po([z0 : 21]) =

with inverse

Hence as the diagram commutes, ¥ = ® o p~
zlzo_l = %ei(eo_el), we obtain

U([z0: 21]) = B i P
0 - <1]) — 7’%4‘7’(2)70 1

V1 — R2%cos(fp — 61)
- v1— R2 Sin(eo - 91)
R

2 2
r{—T . : ;
for R = 3 Mg. While a somewhat cumbersome expression, it allows us to
1 0

easily see how St acts on S?, namely if U([zg : 21]) = ®(h,0) is a point in S?
for some (h,0), then

‘ ' V1 —h2%cos(bp + ¢ — 01)
e’ - ®(h,0) =V ([e%z:21]) = | V1—h2sin(@p+ ¢ —01) | = P(h,0+ o),
h
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3.7. Equivalence to Spheres

so [p] € S acts on S? simply by rotation about the vertical axis by .

Let us find the moment map corresponding to this action. Suppressing ® from
our notation, we have e'? - (h,0) = (h, 0+ ¢). The fundamental vector field is,
for v € R,

&(h,0) = i exp(tv) - (h,0)
dt|,_,
d
= @ o (h/, 0 + t?})
d d
=7 . (h)on + pn . (0 + tv)Oy
= v0y.

Thus & = % We go on to compute for Y a vector field on S?

zgl(%wEucl)(Y) = %(d& N dh) (89, Y)
= 1 (d6(9p)dh(Y) — dO(Y)dh(3y))
= 1dh(Y).

For p a moment map, this is supposed to be —du(Y), so it is immediate
that p = —%h is the moment map we are looking for. Recall that we are
considering the classification only up to translation of the Delzant polytope,
so that —1h(S?) = [-1,4] # [0,1] is not an issue. By the remarks after
definition 3.3, we could consider instead the moment map —ih + % to recover
[0, 1] as moment polytope.

3.7.4 Arbitrary Radius

Recall that for (A, w, St, ;1) a two-dimensional symplectic toric manifold with
moment polytope [0,7], we obtained that it must be (CP!,2rwpg, S, pua).
Thus the previous sections only give an equivariant symplectomorphism to
(52, %wEud, St —ih) for r = % To extend this to arbitrary r, we expand the
diagram 3.2 again:

CP! 52 g S2(2r)
T
R? & [-1,1] x [0,27) —%— [-2r,2r] x [0,27)

Here, ¢ is dilation p — 2rp and 6’(h,0) = (2rh,6). The map @’ is given in
analogy to ® by
(2r)% — h? cos(0)
®'(h',0) = (2r)2 — h?sin(0)
h
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The new maps are all diffeomorphisms, and one quickly checks that 6 o & =
®' o §. Equip S%*(2r) also with 1df A dh’/, where we write (’,0) for the
coordinates in [—2r, 2r] x [0, 27). By the results for unit radius of the previous
sections, linearity of the pullback and the fact that the diagram commutes, it
is enough to show that

5’*id0 Adh' = 27&6&9 N dh
to conclude that
§o W : (CP',2rwpg) — (5%(2r), {wWBuct)
is a symplectomorphism.
This is quickly verified:
8" (dh") = 9y(h' 0 6")db + Oy (W o 8')dh

= 2rdh;
5 (d6) = df.
Hence 6" (3d0 A dh') = 5d6 A dh as desired.

We may now, just as before, define the action of S* on S?(2r) to be such that
6 o U is equivariant, whereby we obtain again that

e (,0) = /(.0 + )

corresponds to rotation of the sphere about the vertical axis. An identical
computation to the one in the last section shows that the moment map is
again —%h’ . Figure 3.2 illustrates the action on S? with its moment map.

|
N
N3

Figure 3.2: S? with its hamiltonian action and moment map

3.8 The Non-Effective Case

If our action 1 : S' — Diff(A) is not effective, the hamiltonian S'-space
(A, a, 9, p) for a choice of moment map p is not a toric manifold, so we
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3.8. The Non-Effective Case

cannot use Delzant’s classification theorem. 1 not being effective means that
the group homomorphism ¢ has a kernel, which is always a subgroup of S*.
We adapt the argument in [11] to classify the possible subgroups.

Lemma 3.23 S! has as finite subgroups the n-th roots of unity I',, for every
n€N. If H < S' is an infinite subgroup, it is dense in S*.

Proof

Step 1: If H < S! is nontrivial and of finite order n, it contains an element
go = €2™0 where to := min{t € (0,1) | ™ € H}. This minimum exists as it
is taken over a set of numbers we assume to be finite. Note that this implies
that o is rational: we have g} = >0 = 1, implying nty, € Z. We claim g
generates H. If not, take any h € H not in the cyclic subgroup generated by
go and write h = €™, Due to the minimality of tg, there exists n € N such
that

nty < z < (n + 1)to,

where the inequalities are strict because we assume that A is not in (go). This
is equivalent to 0 < x — nty < tg, but since €2 (@) = (g )" € H, the
inequality poses a contradiction to the minimality of ¢g.

Hence if H < S' is a finite subgroup of order n, it must be the group I',, of
n-th roots of unity.

Step 2: Assume now that H is infinite and contains only elements of the form

2™ for r € Q. Any i generates a cyclic subgroup of order g, assumlng
p, q are coprime. Hence this subgroup contains the element gy = ¢ & . As this
subgroup is finite and H is infinite, there exists another element of H e*™%
which is not contained in the subgroup generated by 99- From this element,
we obtain another generator g; = e = , and thus also e 3 € H. As this still
generates only a finite subgroup, we may continue this argument to conclude
that there are elements 627”% in H for g arbitrarily large. Hence H is in fact
dense in S!.

Step 3: Lastly, if H contains any element g = e2™ for @ irrational, we claim
H is also dense in S'. It suffices to show that {nf mod 1 |n € Z} is dense in
[0,1) to conclude that g generates a dense cyclic subgroup.

To see this, note first that n — nf mod 1 is injective: If nf mod 1 = mé
mod 1, there exist integers such that m6 — k = nfé — [. Unless m = n, this
gives 0 = %, contradicting irrationality.

Then pick any m € N and divide [0, 1) into m half-open intervals of length %,
explicitly I = [£, EtL) for k € {0, . — 1}. By injectivity, there must be
two distinct 4,5 € {1,...,m + 1} that are mapped into the same interval I.
Thus we have in partlcular o <10 mod 1 and j# mod 1 < k“. But then
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3.8. The Non-Effective Case

subtracting these inequalities, we find

1
|(j —4)0 mod 1| < —
m’
which gives that {n(j — )¢ mod 1 | n € Z} is Z-dense in [0,1). As m was
arbitrary, we see that {nf mod 1 |n € Z} is dense in [0, 1). O

3.8.1 Reducing to an Effective Action

In the case where ker is a dense subgroup, smoothness and thus continuity
of 1 give that 1 is trivial. The trivial action imposes no constraints on our
symplectic manifold, so we are back in the situation of chapter one. There,
we concluded that (A1, 1) and (A, ae) are symplectomorphic if and only if
Aj and As are diffeomorphic, and their total area is the same.

So let us consider the case where H = ker1) is a finite subgroup of S*, hence
it must be I',, for some natural number n. As S! is abelian, every subgroup is
normal, so we may consider the quotient group S'/H. The action 9 descends
to an action 1) of S* /H on A which is effective:

&gH = @Z)g

is well-defined since if gh~! € H, then id = Y1 = Py = Pp. 1t is

effective because ¢gH = id implies ¢4 = id, so g € H and thus gH = H, so 1/1
is injective.

For H = T',,, the map from S' — S! sending g +— ¢" is a surjective group
homomorphism with kernel ', and thus by the first isomorphism theorem,
ST, = S1. The explicit isomorphism is

. Sl/Fn — 5!
an'_>gn-

Thus we obtain an action of S which is also hamiltonian, allowing us to use

what we proved in the preceding chapters. To obtain an action of S I instead

of S'/T'1, we need only compose 3, with 1. For g = e?™? ¢ Sl we have
2mif

B.1(g) =e™n . Hence define

n

¥ : St — Diff(A)
g1 2mis.
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To see that this is hamiltonian, denote by 51 the fundamental vector field
generated by ¥, and compute for p € A

~ d
§1(p) = 7

d
== - %Xp(%)(p)
_ld
on o dt

\Ijexp(t) (p)
t=0

Qzz)exp(t) (p)
t=0

= %51(1’)

by the chain rule. Now let 1 a moment map for the original, non-effective
hamiltonian action %, and « the area form on A. We see that

_Zfla = _Z%§1a
1
= ——lg
n o
1
= —H,
n
SO %u is a moment map for V.

Hence considering the tuple (A, «, U, %,u) for the action ¥ gives by the dis-
cussion in the previous chapters that it is (5?(2r), %wEud, St —%h), where S*
acts by rotation and r is the interval length of the moment polytope by %u.
Hence (A, a, ¢, p) is

(52(2T)7 %wEuch 517 _%h)7

and the action is given by

e (ha ‘9) = (ha 0 + ”90)
This is just rotation around the vertical axis, but “n times more quickly” than
before.

Equivalently, in terms of projective space, it is equivariantly symplectomorphic

to
(CP', 2rwps, S*, npa),

the action given by ‘ ‘
67'50 . [ZO : Zl] = [CZTL@ZO . Zl].
3.9 Conclusion

Let us quickly recapture the content of this chapter. Starting with a connected,
compact surface with an area form (A, «), which is additionally endowed with
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a hamiltonian circle action ¥ with moment map u, we first imposed the fur-
ther constraint that ¢ be effective. This led us to the theory of symplectic
toric manifolds and Delzant’s classification theorem, letting us conclude that
(A, a, 1) is determined (up to equivariant symplectomorphism) by the inter-
val length of the moment polytope p(A), and must be a two-sphere with a
multiple of the standard area form, being acted on by rotation around the
vertical axis.

If the action is not effective, we have seen that it is either trivial, in which
case the conclusion of chapter one is applicable, or the resulting manifold is
also (up to equivalence) a two-sphere, where the action is rotation by a fixed
integer multiple of the angle. We shall formulate this precisely in the following
theorem:

Theorem 3.24 Let T} := (A1, a1,9¥1, 1) and Ty := (Ag, ag, 9, u2) be two
compact, connected, orientable manifolds endowed with area forms «; and
hamiltonian circle actions 1; : S — Diff(A;). Let p; the moment map corre-
sponding to the action ;.

Then there exists an equivariant symplectomorphism between Ty and 15 if and
only if one of the following conditions is satisfied:

1. Both actions are effective and £(p1(A1)) = £(p2(A2));

2. Neither action is effective, but both are nontrivial and £(pi(A1)) =
(p2(A2)), as well as | ker 11| = | ker ¢)o;

3. Both actions are trivial, Ay is diffeomorphic to As, and fA1 = fA2 as.

Proof
Case 1 This case is precisely the content of the injectivity statement of
Delzant’s classification, so there is nothing left to prove. Let r = ¢(u;(4;)).

The work done in section 3.7 shows that T} is equivalent to (S?(2r), %w Fucls ST, —

the action given by rotation.

Case 2 Let n; = |kere;| and fi; the moment map for the action on A; by
St/ ker;. Let r; = £(fi;(A;)). The induced symplectic toric manifolds are
equivalent if and only if r; = ro by Delzant’s theorem, and by section 3.8, T;
is equivariantly symplectomorphic to

(52(27"1')7 %WEucla 1/);0(03 h) = (0 +nip, h)v *%h)
So for these to be equivalent, we need in addition nqy = ns. Hence 17 is

equivalent to 75 if and only if 1 = ro and n; = ng; Noting that £(u;(4;)) =
n;r; then gives the claim.

Case 3 Any symplectic manifold (M, w) can be endowed with the trivial circle
action 1)y = id for all # € S*, so this imposes no additional constraint on our
surfaces. The work that was done in chapter 1 applies to the tuples (A, aq)
and (As, ), and the claim is precisely theorem 2.1. O
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