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Chapter 1

Introduction

As the title indicates, we are focusing two-dimensional manifolds, endowed
with additional structure, and attempt to give a complete classification. More
specifically, we require our surfaceM to be compact, connected, and orientable.
Loosely speaking, this means the main question we will have in mind through-
out this paper is the following:

When are two surfaces M1 and M2 equivalent?

Where of course, as we endow the surfaces with more structure, the objects
we wish to relate will vary depending on the context, along with the notions
of equivalence.

The thesis is divided into two chapters. In the first one, we would like to see
under which conditions two compact, and connected manifolds equipped with
an area form, (A1, α1) and (A2, α2), are equivalent in the sense that there
exists an area preserving diffeomorphism. We will show that it is possible to
classify, for A fixed, the possible area forms of A by the positive real number∫

A
α.

Hence the conclusion will be that (A1, α1) admits an area preserving diffeomor-
phism to (A2, α2) if and only if A1 and A2 are diffeomorphic, and in addition∫

A1

α1 =

∫
A2

α2.

Following up this question will quickly lead us to the beginnings of symplectic
geometry.

In the second chapter, we will consider (A,α, ψ), for A any (compact, con-
nected, orientable) surface, α an area form, and ψ a special type of action on
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A by S1, a so-called hamiltonian action. One might expect to find a lot of
variety in this classification as we are letting A, α and ψ vary, but as we will
see, requiring ψ to be hamiltonian turns out to be a major constraint, to the
point where the only possible triples will be the spheres S2 of any positive
radius, along with multiples of the standard euclidean area form, and rotation
around the vertical axis of the sphere for the action ψ.

Our argumentation follows closely A. C. Da Silva’s Lecture Notes on Syplec-
tic Geometry [1], and a seminar she gave on Symplectic Toric Manifolds [2],
held at ETH Zürich during the spring semester 2019, which have both been
invaluable resources in writing this thesis.
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Chapter 2

Classification by Total Area

This part considers a compact, connected, orientable surface A with a choice
of area form α. So first, we have to clarify the notion of equivalence between
two tuples (A1, α1) and (A2, α2). We should certainly require A1 and A2 to
be diffeomorphic, say by ϕ, and the notion of area being preserved is captured
by requiring that the pullback satisfy

ϕ∗α2 = α1.

The question of when two surfaces are diffeomorphic is answered by the usual
classification of surfaces via their genus and will not be treated further in
this thesis. So throughout, we assume A1 and A2 to be diffeomorphic by ϕ̃;
then (A1, α1) is equivalent to (A2, α2) if and only if (A1, α1) is equivalent to
(A1, ϕ̃

∗α2). Hence we may as well fix a surface A, but endow it with two area
forms α1, α2, and ask under which circumstances there exists a diffeomorphism
ϕ : A→ A such that ϕ∗α2 = α1.

Of course, if there is such a diffeomorphism, the total area is the same:∫
A
α1 =

∫
A
ϕ∗α2 =

∫
ϕ(A)

α2 =

∫
A
α2,

The assertion is now that we can in fact classify (A,α) by total area:

Theorem 2.1 Let A be a compact, connected, orientable surface and α1 and
α2 area forms on A. There exists an area-preserving diffeomorphism ϕ : A→
A, that is, such that ϕ∗α2 = α1, if and only if∫

A
α1 =

∫
A
α2.

The goal of this chapter is to prove the other direction, that is, the existence
of an area preserving diffeomorphism, provided both area forms on A give the
same total area.
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2.1. Symplectic Preliminaries

2.1 Symplectic Preliminaries

We will use some results from symplectic geometry in the following discussion,
which makes it useful to explain how (A,α) can be considered a symplectic
manifold.

Definition 2.2 Let M be any manifold. A symplectic form on M is any
closed, non-degenerate two form on M , that is, ω ∈ Ω2(M) such that

• dω = 0,

• For any p ∈M and u ∈ TpM \ {0}, the map

ωp(u, ·) : TpM → R

is not identically zero.

A symplectic manifold is a pair (M,ω) for ω a symplectic form on M .

Equivalence among symplectic manifolds is characterised by symplectomor-
phisms: a symplectomorphism ϕ from a symplectic manifold (M,ω) to
another, (N, θ), is a diffeomorphism ϕ : M → N such that ϕ∗θ = ω.

Proposition 2.3 Let α an area form on an orientable two-dimensional man-
ifold M . Then α is a symplectic form, making (M,α) into a symplectic man-
ifold.

Proof α is clearly closed as it is of top degree. As α is an area form, it is
nonvanishing, so for any x ∈M , there exist u, v ∈ TxM such that ωx(u, v) 6= 0.
As ωx is alternating, u and v must be linearly independent, for else ωx(u, v) =
ωx(u, au) = aωx(u, u) = 0. Thus (u, v) is a basis of TxM and for u′ ∈ TxM\{0}
arbitrary, write u′ = λ1u + λ2v for λ1 6= 0 without loss of generality. Then
ωx(u′, v) = λ1ωx(u, v) 6= 0. �

Thus our guiding question can be rephrased:

When are (A,α1) and (A,α2) symplectomorphic?

In the next section, we will state and prove a theorem by Moser giving a
sufficient condition for the existence of such a symplectomorphism, more in
fact- the existence of an isotopy. The remainder of the chapter will be spent
proving that the conditions for the Moser theorem are, in fact, met in the case
of our surface A and two area forms satisfying

∫
M α1 =

∫
M α2.

2.2 The Moser Trick

Our problem is similar to a question Moser asked and answered. More gener-
ally, he was concerned with compact symplectic manifolds (M,ω0) and (M,ω1),
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2.2. The Moser Trick

and asked whether one could find a symplectomorphism ϕ which was, in ad-
dition, homotopic to idM . Our treatment of the Moser trick follows chapters
6 and 7 of [1].

Definition 2.4 (Isotopy) Let ρ : M×R→M a map. ρ is called an isotopy
if for all t ∈ R, the map ρt := ρ(·, t) : M → M is a diffeomorphism, and
ρ0 = id.

If we are given an isotopy ρ, we may define for each t ∈ R the vector field

vt(p) =
d

ds

∣∣∣∣
s=t

ρs(ρ
−1
t (p)), p ∈M.

A family of vector fields (vt)t is called a time-dependent vector field. Here,
each vector field vt satisfies

d

ds

∣∣∣∣
s=t

ρs(p) =
d

ds

∣∣∣∣
s=t

ρs
(
ρ−1
t (ρt(p))

)
= vt (ρt(p)) ,

That is,
dρt
dt

= vt ◦ ρt. (2.1)

If, conversely, we start with a time dependent vector field vt, it has a time-
dependent flow ψ such that for t0 ∈ R, p ∈ M and t ∈ R close to t0, the
curve

γ : t 7−→ ψ(t, t0, p)

is the unique maximal integral curve of vt with initial condition γ(t0) = p,
that is

d

ds

∣∣∣∣
s=t

ψ(s, t0, p) = vt(ψ(t, t0, p))

and ψ(t0, t0, p) = p for all t0 ∈ R and p ∈ M . Let ψ(s,t) = ψ(s, t, ·) and
assume M is compact, or that the vt are compactly supported. Then the
maximal integral curves exist for all time t ∈ R. To see how we can use the
time-dependent flow to obtain an isotopy on M , we state two more properties
of the flow as in [3], theorem 9.48:

Proposition 2.5 (Properties of time-dependent flow) Let M be a com-
pact manifold and (vt)t a time-dependent vector field on M . Then its flow ψ
satisfies

(a) ψ(s,t) : M →M is a diffeomorphism for all s, t ∈ R with inverse ψ(t,s),

(b) ψ(t1,t0) ◦ ψ(t0,t2) = ψ(t1,t2).
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2.2. The Moser Trick

An isotopy is now given simply by

ρ : R×M −→M

(t, p) 7−→ ψ(t, 0, p).

ρt := ρ(t, ·) is a diffeomorphism for each t by part (a) of the claim above, and
ρ0 = ψ(0, 0, ·) = id.

Furthermore, ρt satisfies equation 2.1 by virtue of t 7→ ψ(t, 0, p) being an
integral curve of vt. Note that if we attempted to define an isotopy via

ρt0(t, p) = ψ(t, t0, p)

for some t0 6= 0, we would not have ρt00 = id, so by uniqueness of integral
curves, ρ is the unique isotopy corresponding to (vt)t. Hence for M compact
we have a bijective correspondence between

{Isotopies of M} ←→ {Time-dependent vector fields on M}
(ρt)t ←→ (vt)t.

We now expand the notion of the Lie derivative to time-dependent vector
fields.

Definition 2.6 Let M a smooth manifold and v a (time-independent) vector
field on M with flow θt. The Lie derivative by v is defined by

Lv : Ω(M)→ Ω(M), Lvω :=
d

dt

∣∣∣∣
t=0

θ∗tω.

If vt is time-dependent, define similarly for ψ its time-dependent flow

Lvt : Ω(M)→ Ω(M), Lvtω :=
d

ds

∣∣∣∣
s=t

ψ∗(s,t)ω.

This is well defined as the flow ψ exists for s close enough to t. From this
definition we obtain the following identity:

Lemma 2.7 Let vt be a time-dependent vector field on a compact manifold
M inducing the unique isotopy ρt. Let ω ∈ Ω(M). Then d

dtρ
∗
tω = ρ∗tLvtω.
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2.2. The Moser Trick

Proof Recall that we defined ρt = ψ(t,0), and we have ψ(t0,t1) ◦ ψ(t1,t0) =
ψ(t0,t0) = id:

d

ds

∣∣∣∣
s=t

ρ∗sω =
d

ds

∣∣∣∣
s=t

ψ∗(s,0)ω

=
d

ds

∣∣∣∣
s=t

(ψ(s,0) ◦ ψ(0,t) ◦ ψ(t,0))
∗ω

=
d

ds

∣∣∣∣
s=t

ρ∗tψ
∗
(s,t)ω

= ρ∗t
d

ds

∣∣∣∣
s=t

ψ∗(s,t)ω

= ρ∗tLvtω,

where the second to last equality used that the pullback ρ∗t is linear and
independent of s. �

If now in addition ω = ωt is also time-dependent, we can prove the following:

Proposition 2.8 Let (ωt)t∈R be a smooth family of d-forms, vt a time-dependent
vector field and ρ the isotopy generated by vt. Then we have

d

dt
ρ∗tωt = ρ∗t

(
Lvtωt +

dωt
dt

)
.

Proof Recall that for a smooth real function f : R2 → R, we have

d

dt
f(t, t) =

d

ds

∣∣∣∣
s=t

f(s, t) +
d

ds

∣∣∣∣
s=t

f(t, s)

by the chain rule. Then for x ∈M and u, v ∈ TxM fixed, we may consider

(s, t) 7−→ (ρ∗sωt)x(u, v),

which is precisely a smooth function R2 → R, and thus

d

dt
ρ∗tωt =

d

ds

∣∣∣∣
s=t

ρ∗sωt +
d

ds

∣∣∣∣
s=t

ρ∗tωs.

By lemma 2.7, we have d
ds

∣∣
s=t

ρ∗sωt = ρ∗tLvtωt, and by linearity of the pullback,

it follows that d
ds

∣∣
s=t

ρ∗tωs = ρ∗t
dωs
ds

∣∣
s=t

. Together, this is

d

dt
ρ∗tωt = ρ∗tLvtωt + ρ∗t

dωt
dt

= ρ∗t

(
Lvtωt +

dωt
dt

)
.

�

We are now able to state and prove a version of Moser’s theorem:
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2.2. The Moser Trick

Theorem 2.9 (Moser) Suppose M is a compact manifold and ω0, ω1 two
symplectic forms on M such that

• [ω0] = [ω1] ∈ H2
dR(M);

• For all t ∈ [0, 1], the form ωt = (1− t)ω0 + tω1 is symplectic.

Then there exists an isotopy ρ : R ×M → M such that ρ∗tωt = ω0 for all
t ∈ [0, 1].
Note that in particular, ϕ := ρ1 : (M,ω0)→ (M,ω1) is a symplectomorphism.

The proof of this theorem uses the so-called Moser trick:
Suppose we have an isotopy as in the theorem. We can then define the unique
time-dependent vector field associated to ρ as discussed above:

vt :=
dρt
dt
◦ ρ−1

t

Recall that (vt)t satisfies

d

ds

∣∣∣∣
s=t

ρs = vt ◦ ρt.

Hence by proposition 2.8, we have d
dtρ
∗
tωt = ρ∗t

(
Lvtωt + dωt

dt

)
, and thus

d

dt
ρ∗tωt = 0 ⇐⇒ Lvtωt +

dωt
dt

= 0 (2.2)

as ρt is a diffeomorphism.
If, conversely, we start with a time-dependent vector field vt such that 2.2
holds, we consider the isotopy ρ generated by vt; If M is compact, then ρt
exists for all time t ∈ R, and satisfies d

dtρ
∗
tωt = 0, which says nothing but that

ρ∗tωt is independent of t. That is

ρ∗tωt = ρ∗0ω0 = ω0.

Hence to prove the theorem, one need only solve 2.2 for vt.

Proof In the case where ωt = (1 − t)ω0 + tω1, we have dωt
dt = ω1 − ω0. The

cohomology assumption [ω0] = [ω1] then tells us that ω1 − ω0 = dµ for some
µ ∈ Ω1(M).
Using Cartan’s magic formula, we have

Lvtωt = dıvtωt + ıvt dωt︸︷︷︸
=0

,

where ıvt denotes the interior product and dωt = 0 as ωt is symplectic and
thus, in particular, closed.
With this, equation 2.2 becomes

Lvtωt +
dωt
dt

= 0 ⇐⇒ dıvtωt + dµ = 0,

so it is sufficient to solve ıvtωt = −µ. This we can do pointwise to obtain a
unique, smooth vt. �
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2.3. Conditions on the Area Forms

2.3 Conditions on the Area Forms

Remember we wish to prove that if for two area forms on our surface A, we
have

∫
A α1 =

∫
A α2, then (A,α1) and (A,α2) are symplectomorphic. A is a

compact manifold and α1 and α2 are symplectic forms, so if we can verify
the two conditions of Moser’s theorem, we will obtain the desired symplecto-
morphism. It is a matter of some computations to reduce the condition that
(1 − t)α1 + tα2 is symplectic for all t ∈ [0, 1] to the first condition; however,
proving ∫

A
α1 =

∫
A
α2 =⇒ [α1] = [α2]

will take some more refined arguments. Note that the other direction is easy:
If M is a compact manifold of dimension n and [ω0] = [ω1] ∈ Hn(M), then
ω1 − ω0 = dµ for some µ ∈ Ωn−1(M), so∫

M
ω1 −

∫
M
ω0 =

∫
M
dµ =

∫
∂M

µ = 0

by Stokes’ theorem and because M is assumed to have no boundary. Hence∫
M ω1 =

∫
M ω0.

2.3.1 The Sympleticity Condition

Proposition 2.10 Suppose ω0 and ω1 are two area forms on a surface M
which induce the same orientation. Then all convex combinations

ωt = (1− t)ω0 + tω1

are symplectic.

Proof We prove that ωt is an area form for all t ∈ [0, 1], whence it is sym-
plectic by proposition 2.3. So assume by contradiction that ωt is not an area
form for some t ∈ (0, 1), so that there exists x ∈M such that (ωt)x ≡ 0. Then
0 = (1− t)(ω0)x + t(ω1)x, so

(ω0)x =
−t

1− t︸ ︷︷ ︸
<0

(ω1)x.

If (v1, v2) is any positively oriented basis of TxM with respect to ω0, we must
have (ω0)x(v1, v2) > 0 as well as (ω1)x(v1, v2) > 0 as they both induce the
same orientation. This contradicts the equation above. �

Lemma 2.11 Let ω0 and ω1 be symplectic forms on a surface M such that
[ω0] = [ω1]. Then they induce the same orientation on M .
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2.3. Conditions on the Area Forms

Proof The cohomology assumption gives ω0 − ω1 = dµ for some µ ∈ Ω1(M).
Then dµ is not an area form since it is exact: indeed, Stokes’ theorem gives∫

M
dµ =

∫
∂M

µ = 0

as M is assumed to have no boundary. Hence there exists x ∈M with dµx ≡ 0.
Choose a positively oriented basis (v1, v2) of TxM with respect to ω0. Then

0 < (ω0)x(v1, v2) = (ω1)x(v1, v2) + dµx(v1, v2)︸ ︷︷ ︸
=0

,

which implies that also (ω1)x(v1, v2) > 0. Thus (v1, v2) is also positively
oriented with regard to ω1, so the two forms induce the same orientation. �

Hence if we can prove that
∫
A α1 =

∫
A α2 =⇒ [α1] = [α2], this discussion

implies that all convex combinations of α1 and α2 are symplectic.

2.3.2 The Cohomology Condition

Here, we finally show that
∫
A α1 =

∫
A α2 implies [α1] = [α2]. If this is the case,

we have seen that both area forms induce the same orientation, their convex
combinations are symplectic, and thus we get an isotopy and in particular a
symplectomorphism (A,α1)→ (A,α2). We follow [4] in this section.

Let us use the following notation:

Znc (M) = {ω ∈ Ωn
c (M) | dω = 0}

Bn
c (M) = {ω ∈ Ωn

c (M) | ω = dµ for some µ ∈ Ωn−1
c (M)}.

Then we have Ωn
c (M) = Znc (M)/Bn

c (M). Next, note that for M a connected
manifold of dimension n, the map∫

M
: Hn

c (M) −→ R

[ω] 7−→
∫
M
ω,

where Hn
c (M) denotes the compactly supported cohomology of M , is well-

defined, linear, and surjective. It is well defined by Stokes’ theorem using the
same argument as in lemma 2.11, and surjective as we may pick any nonexact
form ω ∈ Ωn

c (M) and multiply it by a suitable cutoff function ρ such that∫
M ρω = a 6= 0; then for any c, we have

∫
M

c
aρω = c.

We will need the following result on the cohomology of the sphere:

Proposition 2.12 Hk(Sn) = 0 for k ∈ {0, n} and Hk(Sn) = R for 1 ≤ k <
n.

10



2.3. Conditions on the Area Forms

We refer to section 15.10 of [5] for a proof.

This, together with the properties of
∫
M discussed above, has an important

consequence:

Lemma 2.13
∫
M : Hn(Sn)→ R is a linear isomorphism.

Proof Since Sn is compact, Hn
c (Sn) = Hn(Sn). As Hn(Sn) = R, we can

view
∫
M as a linear map from R to R, so as a surjective linear map between

vector spaces of the same dimension, it must also be injective. �

Theorem 2.14 (Poincaré Lemma) The compactly supported cohomology

of Rn is Hk
c (Rn) =

{
R, k = n

0, else.

Proof
Step 1: We have H0

c (Rn) = 0 since if ω ∈ Ω0
c(Rn) is closed, it must be a

constant function. The only compactly supported constant function is the
trivial constant zero function, however.

Consider next the special case of H1
c (R). The map∫

R
: Z1

c (R) −→ R, ω 7−→
∫
R
ω

is linear, surjective, and vanishes on exact forms, that is, on B1
c (R). Hence it

induces a map from H1
c (R) to R. We show its kernel is precisely B1

c (R), which
will imply that the induced map is an isomorphism.

So take fdt ∈ Z1
c (R) for some f ∈ C∞c (R) with

∫
R f(t)dt = 0. Then the

function g(t) =
∫ t
−∞ f(t)dt is smooth, compactly supported and satisfies dg =

fdt, hence fdt ∈ B1
c (R).

Step 2: If n > 1, we show H1
c (Rn) = 0 by identifying Rn with Sn \ {p}

for some point p ∈ Sn. Thus any ω ∈ Ω1
c(Rn) which is closed also defines a

closed 1-form in Ω1
c(S

n) which vanishes on a neighbourhood U of p. By the
preceding proposition, H1(Sn) = 0, so ω = dη for some η ∈ Ω0(Sn) = C∞(Sn).
As ω = dη = 0 on U , this implies that η is equal to a constant c on U , so that
η̄ = η − c defines a compactly supported function in Ω0

c(S
n \ {p}) = Ω0

c(Rn).
Hence dη̄ = ω as elements of Ω1

c(Rn).

Step 3: For any k < n, the argument is similar: take ω ∈ Ωk
c (Rn) closed,

which gives rise to a closed form ω ∈ Ωk(Sn) with support in Sn \ U , where
U can be chosen to be a contractible neighbourhood of p. Then due to
Hk(Sn) = 0, there is η ∈ Ωk−1(Sn) such that dη = ω. By the other theo-
rem known as Poincaré’s lemma, which states that closed forms are locally
exact on contractible neighbourhoods, we have that as dη vanishes on U and

11



2.3. Conditions on the Area Forms

U is contractible, η, too, is exact on U . Thus on U , we can write η = dµ for
some µ ∈ Ωk−2(Sn). Next, pick a cutoff function ρ with

χV ≤ ρ ≤ χU

for χ the characteristic function of the appropriate set and V ⊂ U a closed
neighbourhood of p. Then η̄ = η − d(ρµ) is a well-defined (k − 1)-form on Sn

that vanishes near p, hence it defines a compactly supported (k − 1)-form on
Ωk−1(Sn \ U) = Ωk−1

c (Rn) which satisfies dη̄ = dη = ω.

Step 4: Now for the case k = n ≥ 2. We know that
∫
M : Hn

c (Rn) → R is
linear and surjective, so we are left to show injectivity.

Let ω ∈ Ωn
c (Rn) such that

∫
M ω = 0. We identify again Rn with Sn \ {p}, so

we may consider the embedding i : Rn ↪→ Sn. Then the pushforward i∗ω is
an n-form on Sn, and ∫

S1

i∗ω =

∫
Rn
ω = 0

implies by lemma 2.13 that i∗ω = dη for some η ∈ Ωn−1(Sn). The remaining
argument is the same as in the last case: pick a contractible neighbourhood U
of p on which ω vanishes, deduce η = dµ on U for µ ∈ Ωn−2(Sn), and apply a
cutoff function ρ to define η̄ = η − d(ρµ). Then η̄ ∈ Ωn−1

c (Rn) and dη̄ = ω. �

We can now prove the theorem allowing us to conclude the classification:

Theorem 2.15 Let M an orientable connected manifold of dimension n. Then
the map

∫
M : Hn

c (M)→ R defined by

[ω] 7→
∫
M
ω

is a linear isomorphism. In particular, if
∫
M ω0 =

∫
M ω1, then [ω0] = [ω1] ∈

Hn
c (M).

Proof Again, it remains to be shown that
∫
M is injective, that is,

ω ∈ Hn
c (M) such that

∫
M
ω = 0 =⇒ ω = dη

for some η ∈ Ωn−1
c (M). We argue by induction on the minimal number k

of open sets required to cover the support of ω by a good cover, that is, a
cover of sets {Ui} such that each Ui is the domain of a chart σi which is a
homeomorphism from Ui to Rn. As we are working with compactly supported
forms, the minimal number of sets required will always be finite.

If k = 1, then ω uniquely defines an n-form σ∗ω ∈ Ωn(Rn), such that by the
Poincaré lemma,

∫
Rn σ∗ω =

∫
M ω = 0 implies [σ∗ω] = 0 and thus [ω] = 0.

Suppose now all ω′ ∈ Ωn
c (M) whose support can be covered by k−1 good sets

12



2.4. Conclusion

and which satisfy
∫
M ω′ = 0 are exact, and consider ω ∈ Ωn

c (M) such that∫
M ω = 0 and {U1, . . . , Uk} is a good cover of supp(ω).

Let U :=
⋃k−1
i=1 Ui and V := Uk. Pick a partition of unity {ρU , ρV } subordinate

to the cover {U, V } of supp(ω), and define ωU = ρUω and ωV = ρV ω.

Choose ω0 ∈ Ωn
c (M) with support in U ∩ V such that∫

M
ω0 =

∫
M
ωU ,

which is possible by the same argument as the one used for the surjectivity of∫
M . Then ωU −ω0 has support in U , which admits a cover of k−1 good chart

domains, and
∫
M ωU − ω0 = 0, so by hypothesis, there exists ηU ∈ Ωn−1

c (M)
such that

ωU − ω0 = dηU .

Using that 0 =
∫
M ω =

∫
M ωU + ωV ⇐⇒

∫
M ω0 =

∫
M ω0 + ωU + ωV gives

that ∫
M
ω0 + ωV =

∫
M
ω0 − ωU = 0,

where ω0 + ωV has support in V . Hence this form is also exact, so there is
ηV ∈ Ωn−1

c (M) such that
ω0 + ωV = dηV .

Thus we have ωU = dηU + ω0 and ωV = dηV − ω0, whence we conclude

ω = ωU + ωV = d(ηU + ηV ). �

2.4 Conclusion

Let us quickly recapture what we proved and what we started with: If we
have a compact, connected, orientable surface A with any area form α, then∫
A α ∈ R. We may multiply α by any nonzero scalar λ such that λa remains

an area form, proving that the correspondence

{α Area form on A} t {0} −→ R

α 7−→
∫
A
α

is surjective. The main statement we proved was that it is also injective
up to cohomology: if α1, α2 are forms on A such that

∫
A α1 =

∫
A α2, then

theorem 2.15 gives that [α1] = [α2] (since area forms are top-dimensional
forms). Moser’s theorem subsequently provides us with a symplectomorphism
ϕ : (A,α1)→ (A,α2).

13



2.4. Conclusion

Thus we have proven theorem 2.1, that we may indeed classify (A,α) by total
area. Hence for two surfaces with an area form, (A1, α1) and (A2, α2), there
exists a symplectomorphism

ϕ : (A1, α1) −→ (A2, α2)

if and only if there is a diffeomorphism from A1 to A2, and in addition∫
A1

α1 =

∫
A2

α2.

14



Chapter 3

Generalization to Hamiltonian Circle
Actions

This chapter introduces the notion of hamiltonian actions and has as its central
object of study the triple

(A,α, ψ),

where (A,α) is again a compact, connected surface with area form α, and ψ :
S1 → A is a hamiltonian action. We will see that along with any hamiltonian
action of a Lie group G on a manifold M comes a smooth moment map
µ : M → g∗, and thus in the special case where G = S1 acts on the surface A,
this can be seen as a map

µ : A→ R.

A being compact and connected, it follows that µ(A) is a closed interval in R;
we will prove in this chapter that it is possible to classify (A,α, ψ) in terms of
area viewed as the length of this interval `(µ(A)).

We will discuss first the case where ψ is, in addition, an effective action. This
allows us to see (A,α, ψ, µ) as a so-called symplectic toric manifold, for which
there already exists a handy classification theorem by Delzant. After giving
the constructive part of the proof, we will first find the symplectic toric man-
ifold corresponding to µ(A) by following closely Delzant’s construction, and
then show it is equivalent to a more geometrically intuitive one, namely the
sphere S2 being acted on by rotation with respect to the vertical axis.

In the end, we will treat the case where ψ is not effective and show that this
changes very little: in fact, the only difference will turn out to be that eiθ acts
on A = S2 by rotation by nθ for some n ∈ N.
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3.1. Symplectic Toric Manifolds

3.1 Symplectic Toric Manifolds

We start with explaining the meaning of an action being hamiltonian and the
definition of a symplectic toric manifold, proceeding as in [2] in this section.

Definition 3.1 (Hamiltonian action) Let (M,ω) be a symplectic manifold,
G a Lie group with an action ψ : G → Diff(M). The action is said to be
hamiltonian if there exists a map

µ : M → g∗

such that the following two conditions are satisfied:

• For each v ∈ g, let µv : M → R, µv(p) := 〈µ(p), v〉, the component of µ
along v.
Let ξv denote the fundamental vector field generated by the action, ex-
plicitly given by

ξv(p) =
d

dt

∣∣∣∣
t=0

ψexp(tv)(p).

In this case,
dµv = −ıξvω.

• The map µ is equivariant with respect to the G-action on M and the
coadjoint action Ad∗ of G on g∗: for all g ∈ G, we have

µ ◦ ψg = Ad∗g ◦ µ.

Then the tuple (M,ω,G, µ) is called a hamiltonian G-space.

Let us note the following consequence of this definition for the action restricted
to a Lie subgroup:

Lemma 3.2 Let G a Lie group and H a closed subgroup of G, and let g and
h denote the respective Lie algebras. Write i∗ : g∗ → h∗ for the dual map to
the inclusion i : h ↪→ g, that is, i∗(ϕ) = ϕ ◦ i for ϕ ∈ g∗. Suppose (M,ω,G, µ)
is a hamiltonian G-space. Then the restriction of the (hamiltonian) G-action
to H is hamiltonian with moment map

i∗ ◦ µ : M → h∗.

Proof For p ∈M, v ∈ h, we have

(i∗ ◦ µ)v(p) = 〈i∗µ(p), v〉
= 〈µ(p), i(v)〉
= µi(v)(p).

16



3.1. Symplectic Toric Manifolds

Thus as µ is a moment map, d(i∗ ◦ µ)v = −ıξi(v)
ω. But since we know that

the exponential map associated to H is the restriction to h of the exponential
map g→ G, we see that

ξi(v) =
d

dt

∣∣∣∣
t=0

ψexp(ti(v)) =
d

dt

∣∣∣∣
t=0

ψexp(tv) = ξv,

where ψ denotes the action. Thus the fundamental vector field associated to
the action restricted to H is just the fundamental vector field ξv for v restricted
to h, and hence the first condition is satisfied.
For equivariance, let g ∈ H, p ∈M , and v ∈ h:

(i∗ ◦ µ) ◦ ψg(p)(v) = µ(ψg(p))(i(v))

= Ad∗g ◦ µ(p)(i(v))

= Ad∗g ◦ (i∗ ◦ µ(p))(v). �

We will be concerned with the case where G is a torus of exactly half the
dimension of M , as we are interested in a surface and a hamiltonian S1-action.
In the following, we regard Tn = (S1)n and write elements of Tn as tuples
[θ] = (eiθ1 , . . . , eiθn) for θi ∈ R/2πZ.

We further have tn ∼= Rn, and we can identify Rn with its dual via the pairing
given by the standard inner product, which allows us to see the moment map
as a map

µ : M → Rn.

Definition 3.3 (Symplectic toric manifolds) Let (M,ω) a compact sym-
plectic manifold of dimension 2n. If we consider a hamiltonian action of Tn
on M which is, in addition, effective, then for a choice of moment map µ, the
hamiltonian Tn-space (M,ω,Tn, µ) is a symplectic toric manifold.

In the special case of hamiltonian torus spaces, the definition of a moment
map simplifies. The adjoint and coadjoint actions are trivial for a torus as it
is abelian; Then a moment map of an action of Tn is a map µ : M → Rn such
that the coordinate functions µk satisfy

• Tn-invariance: µk([θ] · p) = µk(p) for all [θ] ∈ Tn and p ∈M .

• µk is a hamiltonian function for ξek where ek is the k-th standard basis
vector of Rn, that is,

dµk = −ıξekω.

From this description of the moment map, it follows that for any c ∈ Rn, the
map µ + c is also a moment map for the same action, and if we have two

17



3.2. Delzant Polytopes

moment maps µ and µ̃, then d(µk − µ̃k) = 0 for each k implies that the two
moment maps differ by a constant.

We give an example of a hamiltonian action which will be important later on:

Example 3.4 Let d ∈ N and consider the action of Td on Cd by component-
wise multiplication:

(eiθ1 , . . . , eiθd) · (z1, . . . , zd) := (eiθ1z1, . . . , e
iθdzd).

This action is hamiltonian with moment map

µ(z1, . . . , zd) =
1

2
(|z1|2, . . . , |zd|2) + const.

Proof We compute for v ∈ Rn ∼= tn the fundamental vector field ξv at z =
(r1e

iθ1 , . . . , rde
iθd):

ξv(z) =
d

dt

∣∣∣∣
t=0

ψexp(tv)(z)

=
d

dt

∣∣∣∣
t=0

(eitv1 , . . . , eitvd) · z

=
d

dt

∣∣∣∣
t=0

(r1e
i(tv1+θ1), . . . , r

i(tvd+θd)
d )

=
d∑
i=1

d

dt

∣∣∣∣
t=0

(ri)∂ri +
d

dt

∣∣∣∣
t=0

(tvi + θd)∂θi

=

d∑
i=1

vi∂θi .

Hence ξek = ∂θk . We go on to compute for X a vector field on Cd

ıξekω0(X) = ω0(∂θk , X)

=

d∑
i=1

ridri(∂θk)dθi(X)− ridri(X)dθi(∂θk)

= −rkdrk(X)

= −1
2dr

2
k(X).

Hence the moment map has k-th component µk(z) = 1
2r

2
k, which proves the

claim. �

3.2 Delzant Polytopes

As mentioned above, we will use the image µ(A) to classify (A,α, ψ). More
generally, for symplectic toric manifolds, the image of the manifold by the

18



3.2. Delzant Polytopes

moment map is always a so-called Delzant polytope, and it is in terms of this
type of polytope that symplectic toric manifolds can be classified.

First note that a polytope is the convex hull of a set of points in Rn, whereas a
convex polyhedron is the intersection of a finite number of affine half-spaces
in Rn. A theorem due to Weyl and Minkowski states that convex polyhedra
coincide with bounded polytopes, see for instance theorem 1.1 in [6].

Definition 3.5 Let ∆ ⊂ Rn be a polytope. A face of the polytope is a set of
the form

{x ∈ Rn | f(x) = c}

for some c ∈ R and f ∈ (Rn)∗ such that f(x) ≥ c for all x ∈ ∆.

A vertex is a 0-dimensional face, an edge is a 1-dimensional face, and a
facet is an (n− 1)-dimensional face.

Definition 3.6 A Delzant polytope ∆ ⊂ Rn is a polytope satisfying

• Simplicity: There are n edges meeting at each vertex.

• Rationality: The edges meeting at a vertex τ are rational in the sense
that each edge is of the form τ + tuk for t ≥ 0 and uk ∈ Zn.

• Smoothness: For each vertex, the edge vectors u1, . . . , un of edges meet-
ing at this vertex can be chosen to be a Z-basis of Zn. Equivalently, this
means that if U = (u1| . . . |un) denotes the n×n-matrix which has uk as
its k-th column, we have det(U) = ±1.

Thus if ∆ is a Delzant polytope with d facets and vi are the primitive inward
pointing normal vectors to the facets (where vi ∈ Zn is primitive if it cannot
be written as vi = lui for l ∈ Z and u ∈ Zn), there are scalars λi, i = 1, . . . , d,
such that

∆ = {x ∈ Rn | 〈x, vi〉 ≥ λi, i = 1, . . . , d}. (3.1)

for some vi ∈ Rn, λi ∈ R and d ∈ N.

The following consequence of this definition allows for some more geometrical
intuition:

Lemma 3.7 Let ∆ ⊂ Rn a Delzant polytope. Then there are n facets meeting
at each vertex.

Proof Consider any vertex of ∆ and let (u1, . . . , un) a Z-basis of edge vectors
incident on this vertex. By the smoothness axiom and a change of basis, we
may assume (u1, . . . , un) is the standard basis.

Then the primitive inward pointing normal vectors to the facets meeting at our
vertex are again the standard basis, as orthogonality to the facet determined
by the edge vectors u1, . . . , ûi, . . . , un, where the hat operator denotes omission,
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3.3. Delzant’s Classification

implies the normal can only be a multiple of ui. Requiring it to be primitive
gives that the inward pointing normal vector must be exactly ui, which proves
that there are n facets meeting at each vertex. �

3.3 Delzant’s Classification

In our setting where (A,α) is a compact surface with an area form (and thus
in particular a compact symplectic manifold by proposition 2.3), if we require
the S1-action to be effective, then up to a choice of moment map, we are
working with a symplectic toric manifold. These are, up to equivalence, which
is captured by the notion of equivariant symplectomorphisms, classified by
Delzant’s theorem.

Definition 3.8 Let (M1, ω1, G, µ1) and (M2, ω2, G, µ2) hamiltonian G-spaces
and ϕ : M1 → M2 a smooth map. Then ϕ is equivariant if for all p ∈
M1, g ∈ G

ϕ(g · p) = g · ϕ(p).

Hence an equivariant symplectomorphism between symplectic toric manifolds
is a symplectomorphism in the sense of definition 2.2 satisfying ϕ([θ] · p) =
[θ] · ϕ(p).

Theorem 3.9 (Delzant) There is a bijective correspondence between{
Symplectic toric manifolds
up to equivalence

}
↔
{

Delzant polytopes
up to translation

}
.

For a toric manifold (M2n, ω,Tn, µ), the corresponding polytope is given by
µ(M).

For a complete treatment of the proof, we refer to the original paper by Delzant
[7]. We prove the surjectivity statement below, following chapter 29 of [1].

Notice that in the case where we consider a hamiltonian S1-action on a surface,
the moment map µ is in particular a smooth map from M to R. Hence the
Delzant polytope corresponding to the surface will be an interval; Our goal in
the following will be to construct the symplectic toric manifold corresponding
to this situation. According to the theorem, this manifold will be unique
up to equivariant symplectomorphism. For this, we shall give the general
construction of the symplectic toric manifold corresponding to a given Delzant
polytope.

The main tool used in the construction is the technique of symplectic reduction,
which is a theorem independently proven by Marsden with Weinstein, and
Meyer:
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3.3. Delzant’s Classification

Theorem 3.10 (Marsden-Weinstein, Meyer) Let (M,ω,G, µ) a hamilto-
nian G-space for a compact Lie group G. Let i : µ−1(0) ↪→ M denote the
inclusion and assume that G acts freely on µ−1(0). Then

(a) the orbit space Mred = µ−1(0)/G is a manifold.

(b) pr : µ−1(0)→Mred is a principal G-bundle, where pr denotes the canoni-
cal projection.

(c) there is a symplectic form ωred on Mred such that i∗ω = pr∗ωred.

For a proof, see section 23 of [1]. Note that as pr is a surjection, pr∗ is injective,
and thus ωred is the unique two-form on Mred satisfying (c).

3.3.1 Delzant’s Construction

Let ∆ be a Delzant polytope with d facets. We consider ∆ ⊂ (Rn)∗ for
convenience, and consider the normal vectors to the facets to be in Rn. Let
vi ∈ Zn, i = 1, . . . , d be the inward pointing primitive normal vectors to the
facets. Then for some λi ∈ R, we can write

∆ = {x ∈ (Rn)∗ | 〈x, vi〉 ≥ λi, i = 1, . . . , n}.

Let ei denote the standard basis vectors of Rn, and consider

π̃ : Rd → Rn

ei 7→ vi.

Claim 1: The map π̃ is surjective and maps Zd onto Zn.

Hence π̃ induces a surjective map π : Rd/(2πZd)→ Rn/(2πZn), such that for
x ∈ Rd, we have π(x+ 2πZd) = π̃(x) + 2πZn. Identify Rk/(2πZk) with Tk.

Now let N = kerπ and n the Lie algebra of N . Then N is a closed subgroup
of Td of dimension d − n, and hence itself a torus. Let i : N ↪→ Td denote
the inclusion and identify the Lie algebras of Td and Tn with Rd and Rn,
respectively. Then we have an exact sequence of tori

1 N Td Tn 1
i π

which induces the exact sequence of Lie algebras

0 n Rd Rn 0i π̃

with the dual sequence

0 (Rn)∗ (Rd)∗ n∗ 0.π̃∗ i∗
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3.3. Delzant’s Classification

Now consider Cd with its standard symplectic form ω0 = i
2

∑d
k=1 zk∧zk, along

with the action of Td given by

(et1 , . . . , etd) · (z1, . . . , zd) = (et1z1, . . . , e
tdzd).

According to example 3.4, this action is hamiltonian with moment map

µ : Cd −→ (Rd)∗

(z1, . . . , zd) 7−→
1

2
(|z1|2, . . . , |zd|2) + const.

We choose the constant to be (λ1, . . . , λd). Next, consider the restricted action
of N ⊂ Td on Cd. According to lemma 3.2, this action is also hamiltonian
with moment map

i∗ ◦ µ,

where i∗ : (td)∗ → (nd) is the dual map to the inclusion i : n → td. Consider
Z = (i∗ ◦ µ)−1(0). We claim:

Claim 2: Z is compact and N acts freely on Z.

If this is true, the conditions for the Marsden-Meyer-Weinstein theorem are
met and we obtain the reduced space M∆ = Z/N , along with a symplectic
form ω∆ such that if j : Z ↪→ Cd is the inclusion and pr : Z → M∆ is the
projection, then pr∗ω∆ = j∗ω0.

The next section will prove the claims made above and introduce the hamilto-
nian action making (M∆, ω∆,Tn, µ∆) into a symplectic toric manifold.

3.3.2 The Action on the Reduced Space

We start by reviewing the claims made in Delzant’s construction.

Claim 1: The map π̃ : Rd → Rn is surjective and maps Zd onto Zn.

Proof The argument is very similar to that of lemma 3.7. Fix a vertex of ∆.
By lemma 3.7, there are n facets meeting at this vertex, which are determined
by the n− 1 edge vectors they meet; thus if the facet meets u1, . . . , ûi, . . . , un,
after a change of basis transforming u1, . . . , un into the standard basis, we
see that the inward pointing primitive normal vector to this facet is just ui.
Hence the set of primitive inward pointing normal vectors can by this change
of basis be assumed to be the standard basis, proving the claim. �

Claim 2: N acts freely on Z, and Z is compact.

Proof To show that Z is compact, it suffices by Heine-Borel to show that Z
is closed and bounded. It is clearly closed as it is the preimage of {0} by a
continuous map, and we show that µ(Z) = π̃∗(∆) =: ∆′:
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Lemma 3.11 Let y ∈ (Rd)∗. Then

y ∈ ∆′ ⇐⇒ y ∈ µ(Z).

Proof y is in µ(Z) = µ
(
(i∗ ◦ µ)−1(0)

)
if and only if

1. y is in the image of µ,

2. i∗y = 0.

Using that µ(z1, . . . , zd) = 1
2(|z1|2, . . . , |zd|2) + (λ1, . . . , λd), we see that the

first condition is equivalent to

〈y, ek〉 ≥ λk k = 1, . . . , d,

Using the dual exact sequence, the second condition is equivalent to y being
in the image of π̃∗, that is

y = π̃∗(x)

for some x ∈ (Rn)∗. So if y = π̃∗(x), we have

〈y, ek〉 ≥ λk, ∀k ⇐⇒ 〈π̃∗(x), ek〉 ≥ λk, ∀k
⇐⇒ 〈x, π(ek)〉 ≥ λk, ∀k
⇐⇒ 〈x, vk〉 ≥ λk, ∀k
⇐⇒ x ∈ ∆.

We conclude y ∈ µ(Z) ⇐⇒ y ∈ π̃∗(∆) = ∆′. �

Note that µ is a proper map, that is, if C ⊂ (Rd)∗ is compact, then µ−1(C)
is compact. Indeed, if C is compact, then C = C1 × . . .× Cd for Ck compact
subsets of R∗, and thus µ−1

k (Ck) = {2z − λk | |z|2 ∈ Ck}. This is bounded
as Ck is bounded, and hence µ−1(C) is a product of bounded sets. It is also
closed as µ is continuous, so it is compact by Heine-Borel.

Using this and the lemma we just proved, as ∆′ is compact and µ(Z) = ∆′, Z
must be bounded, and hence compact.

In order to use the Marsden-Weinstein-Meyer theorem, we still have to prove
that N acts freely on Z.

So pick a vertex τ of ∆ and let I = {k1, . . . , kn} denote the set of indices
for the n faces meeting τ . Pick z ∈ Z such that µ(z) = π̃∗(τ), which exists
by lemma 3.11. τ being a vertex means that it is characterised (as seen in
definition 3.5) by n equations 〈τ, vk〉 = λk for all k ∈ I. This gives

〈τ, vk〉 = λk ⇐⇒ 〈τ, π̃(ek)〉 = λk

⇐⇒ 〈π̃∗(τ), ek〉 = λk

⇐⇒ 〈µ(z), ek〉 = λk

⇐⇒ the k-th coordinate of µ(z) is λk

⇐⇒ 1
2 |zk|

2 + λk = λk

⇐⇒ zk = 0.
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Thus these z are precisely those whose coordinate entries for the coordinates
in I are zero and whose other entries are nonzero. We may assume without
loss of generality that I = {1, . . . , n}. Then the stabilizer of z is

(Td)z = {(eiθ1 , . . . , eiθn , 1, . . . , 1) ∈ Td}.

Letting (Rd)z = {(x1, . . . , xn, 2πZ, . . . , 2πZ) ⊂ Rd}, we have by claim 1 that
the restriction π̃ : (Rd)z → Rn maps e1, . . . , en to a Z-basis v1, . . . , vn of Zn.
Hence projecting to tori, we must have that π : (Td)z → Tn is bijective as
a group homomorphism. Recalling N = kerπ for π : Td → Tn, we conclude
that N ∩ (Td)z = {1}, so Nz = {1}. We have thus shown that all stabilizers
of the action by N at points being mapped to vertices are trivial.

If z′ is another point in Z which does not map to a vertex, then Nz′ is con-
tained in Nz for some z which does map to a vertex because then some of the
equalities characterising µ(z′) become inequalities, so the k-th coordinates of
µ(z′) do not have to be zero, which puts more restrictions on the stabilizer
(Td)z. This proves that indeed, all stabilizers are trivial and the action by N
is free, proving claim 2. �

Proposition 3.12 The reduced space Z/N inherits a hamiltonian Tn-action
with a moment map µ∆ such that µ∆(Z/N) = ∆.

Proof As in the proof just above, pick z ∈ Z such that µ(z) = π̃∗(τ) for τ a
vertex of ∆. We have seen that the restriction π : (Td)z → Tn is a bijection,
so let σ be its inverse. Then σ is also a right-inverse of π on the whole of Td,
so from the exact sequence

1 N Td Tn 1
i π

σ

we obtain an isomorphism (i, σ) : N × Tn → Td.

We can now endow Z/N with the action induced from the Tn factor above. In
precise terms, we define for [θ] ∈ Tn, z ∈ Z and pr : Z → Z/N the projection

[θ] · pr(z) := pr(σ([θ]) · z),

where the action on the right hand side is the standard action on Cd by Td.
If w = g · z for some g ∈ N , then σ([θ]) · z = σ([θ])g · w = g · (σ([θ]) · w) as
Td is abelian, so σ([θ]) · z and σ([θ]) · w are in the same N -orbit, hence this
action is indeed well-defined. Next, consider the diagram

Z Cd (Rd)∗ ∼= n∗ ⊕ (Rn)∗ (Rn)∗

Z/N

j

pr

µ σ∗

µ∆
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Here, j is the inclusion, and (Rd)∗ ∼= n∗ ⊕ (Rn)∗ uses the isomorphism (i, σ)
from above at the level of Lie algebra duals. From this we obtain that σ∗ is
just the projection onto the second factor.

As µ is a moment map for the Td-action, it is in particular N -invariant, so
the composition of horizontal maps in the diagram is constant along N -orbits.
Thus we obtain a moment map µ∆ for the Tn-action such that the diagram
commutes, that is

µ∆ ◦ pr = σ∗ ◦ µ ◦ j.

Finally, we have

µ∆(Z/N) = µ∆(pr(Z)) = σ∗ ◦ µ ◦ j(Z).

Then recall µ(j(Z)) = µ(Z) = π̃∗(∆), and σ∗ ◦ π̃∗ = id to obtain

σ∗ ◦ µ ◦ j(Z) = σ∗ ◦ π̃∗(∆) = ∆. �

We have thus constructed from a Delzant polytope ∆ the symplectic toric
manifold (M∆, ω∆,Tn, µ∆). For more details, for example a proof that µ(M)
is always a Delzant polytope and in addition just the one such that following
the construction above, we recover M , see chapter 29 of [1].

3.4 The Case of Surfaces

3.4.1 The Manifold

Let us now return to the setting of a compact, orientable surface A with a
hamiltonian S1-action. As we have seen, a choice of area form α defines a
symplectic form on A, and thus for a choice of moment map µ of the hamil-
tonian action, (A,α, S1, µ) is a toric manifold. As µ : A → R is smooth, it is
in particular continuous, and thus its image µ(A) is an interval in R, which
we can take to be [0, r] for some r > 0 since classification in terms of Delzant
polytopes is only up to translation.

We construct the toric manifold corresponding to ∆ = [0, r]. The primitive
inward pointing normal vectors to the facets are in this case v1 = v and
v2 = −v for v = e1 = 1, the standard basis vector of R. Written in the terms
of equation 3.1, the polytope becomes

∆ = {x ∈ R | 〈x,−v〉 ≥ −r, 〈x, v〉 ≥ 0},

so λ1 = 0 and λ2 = −r.

The map π̃ : R2 → R maps e1 7→ v and e2 7→ −v, so it is given by π̃(t1, t2) =
t1 − t2 and thus its kernel is span(e1 + e2). The induced map is thus given by

π((t1, t2) + R2/2πZ2) = π̃(t1, t2) + R/2πZ = (t1 − t2) + R/2πZ.
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3.4. The Case of Surfaces

r0

v1 v2

Figure 3.1: ∆ with its inward pointing normal vectors

Using the identification t ∼ eit for T ∼= S1 ∼= R/2πZ, we can write this as

π(eit1 , eit2) = eit1e−it2 ,

or simply, for (θ1, θ2) ∈ T2

π(θ1, θ2) = θ1θ
−1
2 .

Thus the kernel of the induced map π is the diagonal subgroup

N = {(θ, θ) ∈ T2 ∼= S1 × S1 | θ ∈ [0, 2π)}.

We can thus identify N simply with S1. Its Lie algebra is simply the kernel
of π̃, which is n = {x(e1 + e2) ∈ R2 | x ∈ R}, which we can identify with R.

We now compute the dual maps π̃∗ and i∗. As Rn and (Rn)∗ are isomorphic
under the pairing given by the standard inner product, every element of (Rn)∗

is a map of the form 〈·, x〉 for some x ∈ Rn. Hence π̃∗(〈·, x〉) ∈ (R2)∗ is given
by

π̃∗(〈·, x〉)(a, b) = 〈π̃(a, b), x〉 = 〈a, x〉 − 〈b, x〉 = 〈(a, b), (x,−x)〉

for (a, b) ∈ R2. Thus under the identification of Rn with its dual, this becomes

π̃∗(x) = (x,−x)

for x ∈ R∗.

Similarly for i∗, we have for 〈·, (x1, x2)〉 ∈ (R2)∗ and y ∈ n that

i∗ (〈·, (x1, x2)〉) (y) = 〈i(y), (x1, x2)〉 = x1y + x2y = 〈y, x1 + x2〉,

and hence
i∗(x1, x2) = x1 + x2.

This gives us the exact sequences

1 N T2 S1
1

θ (θ, θ)

(θ1, θ2) θ1θ
−1
2

i π

for the sequence of tori,
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3.4. The Case of Surfaces

0 n R2 R 0

x (x, x)

(x1, x2) x1 − x2

i π̃

for the sequence of Lie algebras, and

0 R∗ (R2)∗ n∗ 0

x (x,−x)

(x1, x2) x1 + x2

π̃∗ i∗

for the dual sequence.

As in the general construction, we consider the action of T2 on (C2, ω0) given
by

(eiθ1 , eiθ2) · (z1, z2) = (eiθ1z1, e
iθ2z2)

with moment map

µ(z1, z2) =
1

2
(|z1|2, |z2|2) + (0,−r).

The action of the diagonal group N on C2 is thus given by eiθ · (z1, z2) =
(eiθz1, e

iθz2) and, using lemma 3.2 and the definition of i∗ computed above,
has moment map

(i∗ ◦ µ)(z1, z2) =
1

2
(|z1|2 + |z2|2)− r.

Its zero level is

Z = (i∗ ◦ µ)−1(0) = {(z1, z2) ∈ C2 | |z1|2 + |z2|2 = 2r},

which can be seen to be the (real) sphere S3(
√

2r) with radius
√

2r. Hence
the quotient Z/N is the quotient S3/ ∼ by the equivalence relation (z1, z2) ∼
(w1, w2) ⇐⇒ (z1, z2) = λ(w1, w2) for some λ ∈ S1, which is diffeomorphic
to the complex projective space CP1. This uses the description of CPn given
as in lemma 3.15, together with the fact that S3(

√
2r) is diffeomorphic to the

unit three-sphere simply by the map sending z ∈ S3 to
√

2rz.

3.4.2 The Action

Recall that the action of Tn on Z/N is given by

[θ] · pr(z) = pr(σ([θ]) · z),
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3.5. Complex Projective Spaces

where σ is the inverse of the bijection π : (Td)z → Tz for z ∈ Z such that
µ(z) = π̃∗(τ), and τ is a vertex of ∆.

So for ∆ = [0, r], let us pick τ = 0. Recalling π̃∗(x) = (x,−x), this gives
π̃∗(0) = (0, 0). Our expression for µ is

µ(z1, z2) =
1

2
(|z1|2, |z2|2) + (0,−r),

so if µ(z1, z2) = π̃∗(τ), we must have z1 = 0 and, as Z = S3(
√

2r), z2 =
√

2reiθ

for any θ ∈ [0, 2π). Let us choose z = (0,
√

2r). The stabilizer is

(T2)z = {(eiθ, 1) ∈ T2},

and thus the restriction π : (T2)z → S1 is a bijection. Recall that π(θ1, θ2) =
θ1θ
−1
2 , so that its inverse is simply

σ : S1 −→ T2

eiθ 7−→ (eiθ, 1).

Now we can write the action explicitly as

eiθ · [z0 : z1] = [eiθz0 : z1].

The moment map is then µ∆ ◦ pr = σ∗ ◦ µ ◦ j, so

µ∆([z0 : z1]) = σ∗((1
2 |z0|2, 1

2 |z1|2 − r)) = 1
2 |z0|2.

Note that as we take (z0, z1) ∈ S3(
√

2r), |z0|2 ranges in [0, 2r], so that indeed,
the image of CP1 by µ∆ is ∆ = [0, r].

3.5 Complex Projective Spaces

In order to determine the symplectic form induced by the symplectic reduction
of the zero level Z by N above, we recall some basics related to projective
spaces and their natural smooth structure. First, we recall some equivalent
ways to define CPn, and then we see how CPn can be obtained by symplectic
reduction, thereby endowing it with a natural symplectic form.

Definition 3.13 The complex projective space CPn is given by
(
Cn+1 \ {0}

)
/ ∼,

the equivalence relation being defined by

(z0, . . . , zn) ∼ (λz0, . . . , λzn)

for λ ∈ C and (z0, . . . , zn) ∈ Cn+1 \ {0}.

We denote a point in CPn by

[(z0, . . . , zn)] = [z0 : . . . : zn]

for zi ∈ C and not all zi equal to zero.

Informally, this describes the set of complex lines in Cn+1 through the origin.
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3.5. Complex Projective Spaces

The following lemma describes the smooth structure on CPn. For a proof, see
for example [8].

Lemma 3.14 For i = 0, . . . , n, define the sets

Ui := {[z0 : . . . : zn] ∈ CPn | zi 6= 0},

together with the maps

ϕi : Ui −→ Cn ∼= R2n

[z0 : . . . : zn] 7−→ 1

zi
(z0, . . . , ẑi, . . . , zn),

where ẑi denotes the omission of zi.

Then {(ϕi, Ui) | i = 0, . . . , n} is a smooth atlas on CPn.

It is a standard result that this definition of CPn is equivalent to the complex
n-sphere, where its antipodal points are identified. Let us phrase this in the
following lemma, and refer to [9] for a proof.

Lemma 3.15 Let S2n+1 denote the real unit sphere and identify it with the
complex unit sphere Sn ⊂ Cn+1. Define an equivalence relation on S2n+1 by

(z0, . . . , zn) ∼ eiθ(z0, . . . , zn), θ ∈ [0, 2π).

Then S2n+1/ ∼ is diffeomorphic to CPn.

Note that this implies that CPn is a compact manifold. The above equivalence
relation could also be seen as arising from an action of S1, which will guide
us into seeing how CPn can be obtained by symplectic reduction. This way,
we will obtain a symplectic form by the Marsden-Weinstein-Meyer theorem.

Proposition 3.16 Consider the action of S1 on Cn+1 given by

eiθ · (z0, . . . , zn) := (eiθz0, . . . , e
iθzn).

This action is hamiltonian with moment map µ : Cn+1 → R,

µ(z0, . . . , zn) =
1

2

n∑
j=0

|zj |2 + const.

Proof The standard symplectic form on Cn+1 in polar coordinates is ω0 =∑n
j=0 rjdrj ∧ dθj . So for v ∈ R ∼= T1S

1 and z = (z0, . . . , zn), we compute the
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3.5. Complex Projective Spaces

fundamental vector field

ξv(z) =
d

dt

∣∣∣∣
t=0

exp(tv) · (z0, . . . , zn)

=
d

dt

∣∣∣∣
t=0

(eitvr0e
iθ0 , . . . , eitvrne

iθn)

=

n∑
j=0

(
d

dt

∣∣∣∣
t=0

rj

)
∂

∂θj

∣∣∣∣
z

+
d

dt

∣∣∣∣
t=0

(θj + tv)
∂

∂rj

∣∣∣∣
z

=

n∑
j=0

v
∂

∂rj

∣∣∣∣
z

.

Letting v = 1 and X any vector field on Cn+1:

ıξ1ω0(X) =
n∑
j=0

rjdrj ∧ dθj

(
n∑
k=0

∂

∂θk
, X

)

=
n∑
j=0

rj drj

(
n∑
k=0

∂θk

)
︸ ︷︷ ︸

=0

dθj(X)− rjdrj(X) dθj

(
n∑
k=0

∂θk

)
︸ ︷︷ ︸

=δjk

= −
n∑
j=0

rjdrj(X)

= −1

2

n∑
j=0

dr2
j (X).

From this and µ = 1
2

∑n
j=0 r

2
j + const., it is immediate that dµ = −ıξ1ω0. �

Thus (Cn+1, ω0, S
1, µ) is a hamiltonian S1-space and S1 is compact. If we

choose the additive constant of the moment map to be −1
2 , its zero level set

is

µ−1(0) = {z ∈ Cn+1 | 1

2

n∑
j=0

|zj |2 −
1

2
= 0} = S2n+1.

For any eiθ ∈ S1, we have that eiθ(z0, . . . , zn) = (z0, . . . , zn) implies z0 = . . . =
zn = 0, so the action is free on Cn+1 \ {0} and thus in particular on µ−1(0) =
S2n+1. Hence the conditions for Marsden-Weinstein-Meyer are satisfied; the
quotient S2n+1/S1 is a manifold, and the orbit equivalence relation of this
quotient is just the same as the equivalence relation from lemma 3.15, hence
the reduced space is just CPn. We take this as the definition of our symplectic
form on CPn:

Definition 3.17 The Fubini-Study form ωFS on CPn is the symplectic
form induced by symplectic reduction of Cn+1 by S1 with respect to the hamil-
tonian action and moment map described in proposition 3.16.
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Equivalently, if π : S2n+1 → CPn denotes the projection and i : S2n+1 ↪→ Cn+1

the inclusion, ωFS is the unique symplectic form on CPn satisfying

π∗ωFS = i∗ω0.

3.6 The Case of Surfaces - The Area Form

We have defined the symplectic form induced on CPn seen as the quotient
S2n+1/S1 to be the Fubini-Study form. Note carefully, however, that both
spheres in this quotient are of unit radius, whereas if we recall the moment
map we obtained by Delzant’s construction,

(i∗ ◦ µ)(z1, z2) =
1

2
(|z1|2 + |z2|2)− r,

we saw that its zero level set Z is the sphere with radius
√

2r, denoted S3(
√

2r).
During the symplectic reduction, we considered the equivalence relation aris-
ing from the subgroup N , which in this case was just S1 with the action
eiθ · (z1, z2) := (eiθz1, e

iθz2), whose orbit equivalence relation is precisely the
one used in the characterisation of CPn as given in lemma 3.15. Let us thus in-
vestigate how the radius of the sphere affects the symplectic manifold obtained
by reduction.

Consider S2n+1(a) for general a > 0 and n ∈ N. We write as usual S2n+1(1) =
S2n+1. Then of course, S2n+1 is diffeomorphic to S2n+1(a) by

ϕ̃ : S2n+1 −→ S2n+1(a)

z 7−→ az.

This map induces a diffeomorphism ϕ such that the following diagram com-
mutes:

S2n+1 S2n+1(a)

S2n+1/S1 S2n+1(a)/S1

ϕ̃

ϕ

So both quotients are diffeomorphic to CPn, but ϕ̃ may not be a symplecto-
morphism.

Let ω0 denote the standard symplectic form on Cn+1 restricted to S2n+1(a)
and S2n+1, respectively. Compute for z ∈ S2n+1 and u, v ∈ TzS2n+1

(ϕ̃∗ω0)z(u, v) = (ω0)az (Dϕ̃(z)[u], Dϕ̃(z)[v]) = (ω0)az(au, av),

so by bilinearity of ω0, we see that ϕ̃∗ω0 = a2ω0. This implies that the
symplectic form obtained by reducing the sphere S2n+1(a) is just a2 times
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the symplectic form obtained from reducing S2n+1. So letting ω denote the
symplectic form on S2n+1(a)/S1, we have

ω = a2ωFS .

Thus in our case where a =
√

2r, we have that the symplectic manifold (A,α)
with hamiltonian S1-action has to be

(A,α) = (CP1, 2r ωFS)

with the action given by

eiθ · [z0 : z1] = [eiθz0 : z1],

which completes our classification.

3.7 Equivalence to Spheres

In this section, we exhibit an equivariant symplectomorphism from the toric
manifold obtained above to one allowing for more geometric intuition. Our
strategy is showing that CP1 is diffeomorphic to S2, where we adapt an ar-
gument from [10], checking what the symplectic form must be on S2 for our
diffeomorphism to become a symplectomorphism, and finally defining the ac-
tion on S2 to be such that the symplectomorphism becomes equivariant. We
will carry out the proofs for the sphere with unit radius first and generalize in
the end.

3.7.1 The Manifold

Proposition 3.18 CP1 carrying its standard smooth structure is diffeomor-
phic to S2, the charts on S2 being given by stereographic projection.

Proof We first prove that replacing the chart ϕ0 from lemma 3.14 by ϕ̄0 :
U0 → C, given by

ϕ̄0([z0 : z1]) = z1z
−1
0 ,

induces the same smooth structure on CP1. For this, we need to prove that
{ϕ0, ϕ1, ϕ̄0} is still a smooth atlas, that is, that all transition functions are
smooth. Two quick computations show

ρ0,0̄(z) = ϕ0 ◦ ϕ̄−1
0 (z) = ϕ0([1 : z]) = z,

as well as

ρ1,0̄(z) = ϕ1 ◦ ϕ̄−1
0 (z) = ϕ1([1 : z]) =

1

z
=

z

|z|2
.
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Essentially the same computation shows ρ1,0̄ = ρ0̄,1 and ρ0,0̄ = ρ0̄,0. Identify-
ing C ∼= R2 via the canonical isomorphism, the transition maps become

ρ0,0̄(x0, x1) = (x0,−x1)

ρ1,0̄(x0, x1) =

(
x0

x2
0 + x2

1

,
x1

x2
0 + x2

1

)
,

both evidently smooth.

Recall at this point the standard smooth structure on S2: Define VN = S2 \
{xN} and VS = S2 \{xS} for xN = (0, 0, 1) the north pole and xS = (0, 0,−1)
the south pole. The charts are given by

ψ0 : VN → R2, ψ0(x1, x2, x3) =
1

1− x3
(x1, x2)

ψ1 : VS → R2, ψ1(x1, x2, x3) =
1

1 + x3
(x1, x2),

and both transition functions are

ψ0 ◦ ψ−1
1 (x0, x1) = ψ1 ◦ ψ−1

0 (x0, x1) =

(
x0

x2
0 + x2

1

,
x1

x2
0 + x2

1

)
.

The reason we swapped ϕ0 by ϕ̄0 before was to achieve the same transition
functions for both atlases:

ϕ1 ◦ ϕ̄−1
0 = ψ1 ◦ ψ−1

0 . (∗)

This enables us to define the map

Ψ : CP1 −→ S2

ϕ−1
1 (x1, x2) 7−→ ψ−1

1 (x1, x2)

ϕ̄−1
0 (x1, x2) 7−→ ψ−1

0 (x1, x2),

with inverse

Ψ−1 : S2 −→ CP1

ψ−1
0 (x1, x2) 7−→ ϕ̄−1

0 (x1, x2)

ψ−1
1 (x1, x2) 7−→ ϕ−1

1 (x1, x2).

Ψ is well-defined because of (∗): if ϕ̄−1
0 (x1, x2) = ϕ−1

1 (y1, y2) for some (x1, x2)
and (y1, y2) in R2, then this is equivalent to

(x1, x2) = ϕ̄0 ◦ ϕ−1
1 (y1, y2)

∗
= ψ0 ◦ ψ−1

1 (y1, y2)

⇐⇒ ψ−1
0 (x1, x2) = ψ−1

1 (y1, y2).
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That is to say that the following diagram commutes:

CP1 S2

R2

ϕi

Ψ

ψi

(3.2)

for i = 0, 1. As Ψ = ψ−1
i ◦ ϕi is a composition of diffeomorphisms and the

transition functions are smooth, it is a diffeomorphism, too. �

3.7.2 The Area Form

Note that on the sphere S2 with unit radius, the standard volume form vol =
dx ∧ dy ∧ dz of R3 induces an area form: M := B1(0) = {v ∈ R3 | ‖v‖ ≤ 1} is
a manifold with boundary S2, and restricting the standard volume form gives
a volume form on B1(0). Hence vol induces an area form on ∂B1(0) given
by ıX(vol) for X the section of TM |∂M which sends p = (x, y, z) ∈ S2 to the
outward-pointing normal vector (x∂x+y∂y+z∂z)p ∈ TpR3. Denoting the form
on S2 by σ, we compute for Y and Z vector fields

σ(Y,Z) = ıXvol(Y, Z) = det

dx(X) dx(Y ) dx(Z)
dy(X) dy(Y ) dy(Z)
dz(X) dz(Y ) dz(Z)


= dx(X) · dy ∧ dz(Y, Z)− dy(X) · dx ∧ dz(Y, Z) + dz(X) · dx ∧ dy(Y,Z)

= (xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy) (Y, Z).

By construction, this is an area form and thus a symplectic form on S2. To
give a more handy characterization, we pull it back to R2 by the following
parametrization:

Φ : R2 −→ S2

(θ, h) 7−→


√

1− h2 cos(θ)√
1− h2 sin(θ)

h


for h ∈ [−1, 1] and θ ∈ [0, 2π). This can be seen as computing σ in polar
coordinates:

Φ∗dx = ∂θ(x ◦ Φ)dθ + ∂h(x ◦ Φ)dh

= −
√

1− h2 sin(θ)dθ − h√
1− h2

cos(θ)dh,

Φ∗dy =
√

1− h2 cos(θ)dθ − h√
1− h2

sin(θ)dh,

Φ∗dz = dh.
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Thus for the wedge products, we obtain

Φ∗dy ∧ dz =
√

1− h2 cos(θ)dθ ∧ dh,

Φ∗dz ∧ dx =
√

1− h2 sin(θ)dθ ∧ dh,
Φ∗dx ∧ dy = h sin2(θ)dθ ∧ dh− h cos2(θ)dh ∧ dθ

= hdθ ∧ dh.

Inserting this into Φ∗σ gives

Φ∗σ =
(
(1− h2) cos2(θ) + (1− h2) sin2(θ) + h2

)
dθ ∧ dh

= dθ ∧ dh.

This shall be our definition for the standard symplectic form on S2:

Definition 3.19 We call ωEucl := σ the Euclidean symplectic form on
S2. We will from now on suppress Φ∗ from our notation and just write

ωEucl = dθ ∧ dh.

So far, we know that CP1 is diffeomorphic to S2, and we have natural sym-
plectic forms on each manifold. The next few propositions illustrate the close
relation between (CP1, ωFS) and (S2, ωEucl) as symplectic manifolds. First,
we give a concrete description of ωFS on its first coordinate chart:

Lemma 3.20 Let ϕ̄0, U0 as in lemma 3.18 the first chart on CP1, that is,

U0 = {[z0 : z1] ∈ CP | z0 6= 0} and ϕ̄0([z0 : z1]) = z1z
−1
0 . On this chart, we

have

ωFS = − dx ∧ dy
(1 + x2 + y2)2

.

Denote ω̃FS = dx∧dy
(1+x2+y2)2 . Then this is to say that ϕ̄∗0(−ω̃FS) = ωFS.

Proof We use the uniqueness of the induced symplectic form on the reduced
space by the Marsden-Weinstein-Meyer theorem 3.10. Recall how we obtained
CPn as the quotient S2n+1/S1 and, for n = 1, the following diagram:

S3 C2

CP1 C ∼= R2

i

π

ϕ̄0

Hence ϕ̄∗0(−ω̃FS) = ωFS if and only if (ϕ̄0 ◦ π)∗ω̃FS = −i∗ω0 for ω0 the
standard symplectic form on C2.
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We work in polar coordinates. Then we have ω0 = r0dr0 ∧ dθ0 + r1dr1 ∧ dθ1,
and for (z0, z1) = (r0e

iθ0 , r1e
iθ1) ∈ S3

ψ(z0, z1) := (ϕ̄0 ◦ π)(z0, z1) =
r1

r0
e−i(θ1−θ0) ∈ C

'
(
r1

r0
cos(θ0 − θ1),

r1

r0
sin(θ0 − θ1)

)
= (x, y) ∈ R2.

Then abbreviating ∆ = θ0 − θ1, we have

ψ∗(dx) = ∂r0(x ◦ ψ)dr0 + ∂θ0(x ◦ ψ)dθ0 + ∂r1(x ◦ ψ)dr1 + ∂θ1(x ◦ ψ)dθ1

= − r1
r2
0

cos ∆dr0 − r1
r0

sin ∆dθ0 + 1
r0

cos ∆dr1 + r1
r0

sin ∆dθ1

= 1
r0

cos ∆
(
dr1 − r1

r0
dr0

)
+ r1

r0
sin ∆ (dθ1 − dθ0) ,

ψ∗(dy) = − r1
r2
0

sin ∆dr0 + r1
r0

cos ∆dθ0 + 1
r0

sin ∆dr1 − r1
r0

cos ∆dθ1

= r1
r0

cos ∆ (dθ0 − dθ1) + 1
r0

sin ∆
(
dr1 − r1

r0
dr0

)
.

Thus we obtain for the wedge product

ψ∗(dx ∧ dy) = r1
r2
0

cos2 ∆
(
dr1 ∧ dθ0 − dr1 ∧ dθ1 − r1

r0
dr0 ∧ dθ0 + r1

r0
dr0 ∧ dθ1

)
+ r1

r2
0

sin2 ∆
(
dθ1 ∧ dr1 − r1

r0
dθ1 ∧ dr0 − dθ0 ∧ dr1 + r1

r0
dθ0 ∧ dr0

)
= r1

r2
0

(
dr1 ∧ dθ0 − dr1 ∧ dθ1 − r1

r0
dr0 ∧ dθ0 + r1

r0
dr0 ∧ dθ1

)
.

For the denominator in the expression for ω̃FS , we have

ψ∗(1 + x2 + y2)2 =
(
1 + (x ◦ ψ)2 + (y ◦ ψ)2

)2
= (1 +

r2
1

r2
0
)2,

so that finally,

ψ∗(ω̃FS) =
r1r

2
0

r2
0 + r2

1

(
dr1 ∧ dθ0 − dr1 ∧ dθ1 − r1

r0
dr0 ∧ dθ0 + r1

r0
dr0 ∧ dθ1

)
.

(3.3)
This is now a form on S3 ⊂ C2, so the following identities hold:

1. r2
0 + r2

1 = 1,

2. r0dr0 + r1dr1 = 0.

The second identity is obtained by applying the exterior differential to the
first one. Using this, 3.3 simplifies to

ψ∗(ω̃FS) = r2
0r1dr1︸ ︷︷ ︸

=−r3
0dr0

∧dθ0 − r2
0r1dr1 ∧ dθ1 − r2

1r0dr0 ∧ dθ0 + r2
1r0dr0︸ ︷︷ ︸

=−r3
1dr1

∧dθ1

= r1dr1 ∧ dθ1(−r2
0 − r2

1) + r0dr0 ∧ dθ0(−r2
0 − r2

1)

= −ω0. �

36



3.7. Equivalence to Spheres

The following diagram describes our situation:

(CP1, ωFS) (S2, ωEucl)

(R2, ω̃FS) [−1, 1)× [0, 2π)

ϕ̄0
ψ0

Φ

An equally lengthy but mostly identical computation shows that ϕ∗1ω̃FS =
ωFS .

As a next step, we will pull back ω̃FS to [−1, 1) × [0, 2π) and see that we
essentially obtain ωEucl.

Proposition 3.21 ωFS = 1
4ωEucl for the Fubini-Study form on CP1.

Proof Recall the parametrization of S2 from the beginning of the section,
given by

Φ : R2 −→ S2

(θ, h) 7−→
(√

1− h2 cos(θ),
√

1− h2 sin(θ), h
)
.

Composing this with the stereographic projection

ψ0 : S2 \ {xN} −→ R2

(x, y, z) 7−→ 1

1− z
(x, y)

gives the map

ρ0 : R2 −→ R2

(θ, h) 7−→

(√
1−h2

1−h cos(θ)√
1−h2

1−h sin(θ)

)
.

The rest of the proof is a matter of computig ρ∗0ω̃FS . So set A := 1−h2

(1−h)2 = 1+h
1−h

and note
√
A =

√
1−h2

1−h . Then

∂
√
A

∂h
=

1

2
√
A

1− h+ 1 + h

(1− h)2
=

1√
A(1− h)2

.

Using this, we compute

ρ∗0dx =
∂

∂θ
(x ◦ ρ0)dθ +

∂

∂h
(x ◦ ρ0)dh

= −
√
A sin(θ)dθ +

cos(θ)√
A(1− h)2

dh,
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3.7. Equivalence to Spheres

and similarly

ρ∗0dy =
√
A cos(θ)dθ +

sin(θ)√
A(1− h)2

dh.

Hence ρ∗0(dx ∧ dy) = − sin2(θ)
(1−h)2dθ ∧ dh+ cos2(θ)

(1−h)2dh ∧ dθ = dh∧dθ
(1−h)2 . We also have

ρ∗0((1 + x2 + y2)2) =

(
1 +

1− h2

(1− h)2

)2

=

(
2

1− h

)2

,

so inserting this into the expression for ω̃FS yields

ρ∗0ω̃FS =
(1− h)2

4(1− h)2
dh ∧ dθ = −1

4
ωEucl.

The sign change occurs as ψ0 is orientation-reversing. If we now apply ϕ̄∗0,
lemma 3.20 tells us that we obtain precisely ωFS . �

Again, we could carry out a very similar computation for ψ1 and obtain that
ρ∗1ω̃FS = 1

4ωEucl. We chose to work out the case for ϕ̄0 and ψ0 to emphasise
the occurring sign change due to the charts being orientation reversing, which
does not happen for ϕ1 and ψ1. Let us summarise these results in the following
lemma:

Lemma 3.22 Let ϕ̄0, ϕ1 and ψ0, ψ1 the charts on CP1 and S2, respectively,
as in proposition 3.18. Let ρi = ψi ◦ Φ. The following hold:

1. ρ∗0ω̃FS = −1
4ωEucl;

2. ρ∗1ω̃FS = 1
4ωEucl;

3. ϕ̄∗0ω̃FS = −ωFS;

4. ϕ∗1ω̃FS = ωFS.

Proof We have proven 1. and 3. in the last two propositions, 2. and 4. are
analogous. �

Hence our commutative diagram becomes

CP1 S2

R2 [−1, 1]× [0, 2π)

Ψ

ϕi
ψi

ρi

Φ

The relations from lemma 3.22 then tell us that if we simply equip S2 with
1
4ωEucl,

Ψ∗ 1
4ωEucl = ϕ̄∗0(ρ−1

0 )∗
dθ ∧ dh

4
= ϕ̄∗0(−ω̃FS) = ωFS

by the previous lemma on U0 ⊂ CP1, and similarly on U1: Hence Ψ is a
symplectomorphism.
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3.7. Equivalence to Spheres

3.7.3 The Action

To see what the action we obtained corresponds to on S2, we must define it
such that our symplectomorphism Ψ becomes equivariant (as else the resulting
toric manifolds would not be equivalent). That is, we define

eiθ ·Ψ([z0 : z1]) = Ψ([eiθz0 : z1]).

To see how this acts concretely on S2, we find an explicit expression for Ψ.
We work on the charts ϕ̄0 and ψ0, but the case for ϕ1 and ψ1 is analogous.
Consider the diagram from before:

CP1 S2

R2 [−1, 1)× [0, 2π)

Ψ

ϕ̄0
ψ0

ρ

Φ

The diagram commutes by our definition of Ψ = ψ−1
0 ◦ϕ̄0 on U0 and ρ = ψ0◦Φ.

We shall regard R2 ∼= C here and work in polar coordinates. Recall that

ρ : [−1, 1)× [0, 2π) −→ R2

(h, θ) 7−→

√1+h
1−h cos(θ)√
1+h
1−h sin(θ)

 =

√
1 + h

1− h
eiθ,

with inverse

reiθ 7−→
(
r2 − 1

r2 + 1
, θ

)
.

Hence as the diagram commutes, Ψ = Φ ◦ ρ−1 ◦ ϕ̄0, and using ϕ̄0([z0 : z1]) =

z1z
−1
0 = r1

r0
ei(θ0−θ1), we obtain

Ψ([z0 : z1]) = Φ

(
r2

1 − r2
0

r2
1 + r2

0

, θ0 − θ1

)

=


√

1−R2 cos(θ0 − θ1)√
1−R2 sin(θ0 − θ1)

R


for R =

r2
1−r2

0

r2
1+r2

0
. While a somewhat cumbersome expression, it allows us to

easily see how S1 acts on S2, namely if Ψ([z0 : z1]) = Φ(h, θ) is a point in S2

for some (h, θ), then

eiϕ · Φ(h, θ) = Ψ([eiϕz0 : z1]) =


√

1− h2 cos(θ0 + ϕ− θ1)√
1− h2 sin(θ0 + ϕ− θ1)

h

 = Φ(h, θ + ϕ),
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3.7. Equivalence to Spheres

so [ϕ] ∈ S1 acts on S2 simply by rotation about the vertical axis by ϕ.

Let us find the moment map corresponding to this action. Suppressing Φ from
our notation, we have eiϕ · (h, θ) = (h, θ+ϕ). The fundamental vector field is,
for v ∈ R,

ξv(h, θ) =
d

dt

∣∣∣∣
t=0

exp(tv) · (h, θ)

=
d

dt

∣∣∣∣
t=0

(h, θ + tv)

=
d

dt

∣∣∣∣
t=0

(h)∂h +
d

dt

∣∣∣∣
t=0

(θ + tv)∂θ

= v∂θ.

Thus ξ1 = ∂
∂θ . We go on to compute for Y a vector field on S2

ıξ1(1
4ωEucl)(Y ) = 1

4(dθ ∧ dh) (∂θ, Y )

= 1
4 (dθ(∂θ)dh(Y )− dθ(Y )dh(∂θ))

= 1
4dh(Y ).

For µ a moment map, this is supposed to be −dµ(Y ), so it is immediate
that µ = −1

4h is the moment map we are looking for. Recall that we are
considering the classification only up to translation of the Delzant polytope,
so that −1

4h(S2) = [−1
2 ,

1
2 ] 6= [0, 1] is not an issue. By the remarks after

definition 3.3, we could consider instead the moment map −1
4h+ 1

2 to recover
[0, 1] as moment polytope.

3.7.4 Arbitrary Radius

Recall that for (A,ω, S1, µ) a two-dimensional symplectic toric manifold with
moment polytope [0, r], we obtained that it must be (CP1, 2rωFS , S

1, µ∆).
Thus the previous sections only give an equivariant symplectomorphism to
(S2, 1

4ωEucl, S
1,−1

4h) for r = 1
2 . To extend this to arbitrary r, we expand the

diagram 3.2 again:

CP1 S2 S2(2r)

R2 [−1, 1]× [0, 2π) [−2r, 2r]× [0, 2π)

Ψ

ϕ
ψ

δ

Φ

ρ
δ′

Φ′

Here, δ is dilation p 7→ 2rp and δ′(h, θ) = (2rh, θ). The map Φ′ is given in
analogy to Φ by

Φ′(h′, θ) =


√

(2r)2 − h2 cos(θ)√
(2r)2 − h2 sin(θ)

h

 .
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3.8. The Non-Effective Case

The new maps are all diffeomorphisms, and one quickly checks that δ ◦ Φ =
Φ′ ◦ δ′. Equip S2(2r) also with 1

4dθ ∧ dh
′, where we write (h′, θ) for the

coordinates in [−2r, 2r]× [0, 2π). By the results for unit radius of the previous
sections, linearity of the pullback and the fact that the diagram commutes, it
is enough to show that

δ′∗ 1
4dθ ∧ dh

′ = 2r 1
4dθ ∧ dh

to conclude that

δ ◦Ψ : (CP1, 2rωFS) −→ (S2(2r), 1
4ωEucl)

is a symplectomorphism.

This is quickly verified:

δ′∗(dh′) = ∂θ(h
′ ◦ δ′)dθ + ∂h(h′ ◦ δ′)dh

= 2rdh;

δ′∗(dθ) = dθ.

Hence δ′∗(1
4dθ ∧ dh

′) = r
2dθ ∧ dh as desired.

We may now, just as before, define the action of S1 on S2(2r) to be such that
δ ◦Ψ is equivariant, whereby we obtain again that

eiϕ · Φ′(h′, θ) = Φ′(h′, θ + ϕ)

corresponds to rotation of the sphere about the vertical axis. An identical
computation to the one in the last section shows that the moment map is
again −1

4h
′. Figure 3.2 illustrates the action on S2 with its moment map.

2r −h
4

r
2

−r
2

Figure 3.2: S2 with its hamiltonian action and moment map

3.8 The Non-Effective Case

If our action ψ : S1 → Diff(A) is not effective, the hamiltonian S1-space
(A,α, ψ, µ) for a choice of moment map µ is not a toric manifold, so we
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3.8. The Non-Effective Case

cannot use Delzant’s classification theorem. ψ not being effective means that
the group homomorphism ψ has a kernel, which is always a subgroup of S1.
We adapt the argument in [11] to classify the possible subgroups.

Lemma 3.23 S1 has as finite subgroups the n-th roots of unity Γn for every
n ∈ N. If H < S1 is an infinite subgroup, it is dense in S1.

Proof
Step 1: If H < S1 is nontrivial and of finite order n, it contains an element
g0 = e2πit0 , where t0 := min{t ∈ (0, 1) | e2πit ∈ H}. This minimum exists as it
is taken over a set of numbers we assume to be finite. Note that this implies
that t0 is rational: we have gn0 = e2πint0 = 1, implying nt0 ∈ Z. We claim g0

generates H. If not, take any h ∈ H not in the cyclic subgroup generated by
g0 and write h = e2πix. Due to the minimality of t0, there exists n ∈ N such
that

nt0 < x < (n+ 1)t0,

where the inequalities are strict because we assume that h is not in 〈g0〉. This
is equivalent to 0 < x − nt0 < t0, but since e2πi(x−nt0) = h(g−1

0 )n ∈ H, the
inequality poses a contradiction to the minimality of t0.

Hence if H < S1 is a finite subgroup of order n, it must be the group Γn of
n-th roots of unity.

Step 2: Assume now that H is infinite and contains only elements of the form

e2πir for r ∈ Q. Any e
2πi p

q generates a cyclic subgroup of order q, assuming

p, q are coprime. Hence this subgroup contains the element g0 = e
2πi
q . As this

subgroup is finite and H is infinite, there exists another element of H e2πi s
t

which is not contained in the subgroup generated by g0. From this element,

we obtain another generator g1 = e
2πi
t , and thus also e

2πi
sq ∈ H. As this still

generates only a finite subgroup, we may continue this argument to conclude

that there are elements e
2πi 1

q in H for q arbitrarily large. Hence H is in fact
dense in S1.

Step 3: Lastly, if H contains any element g = e2πiθ for θ irrational, we claim
H is also dense in S1. It suffices to show that {nθ mod 1 | n ∈ Z} is dense in
[0, 1) to conclude that g generates a dense cyclic subgroup.

To see this, note first that n 7→ nθ mod 1 is injective: If nθ mod 1 = mθ
mod 1, there exist integers such that mθ − k = nθ − l. Unless m = n, this
gives θ = k−l

m−n , contradicting irrationality.

Then pick any m ∈ N and divide [0, 1) into m half-open intervals of length 1
m ,

explicitly Ik = [ km ,
k+1
m ) for k ∈ {0, . . . ,m− 1}. By injectivity, there must be

two distinct i, j ∈ {1, . . . ,m + 1} that are mapped into the same interval Ik.
Thus we have in particular k

m ≤ iθ mod 1 and jθ mod 1 < k+1
m . But then
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3.8. The Non-Effective Case

subtracting these inequalities, we find

|(j − i)θ mod 1| ≤ 1

m
,

which gives that {n(j − i)θ mod 1 | n ∈ Z} is 1
m -dense in [0, 1). As m was

arbitrary, we see that {nθ mod 1 | n ∈ Z} is dense in [0, 1). �

3.8.1 Reducing to an Effective Action

In the case where kerψ is a dense subgroup, smoothness and thus continuity
of ψ give that ψ is trivial. The trivial action imposes no constraints on our
symplectic manifold, so we are back in the situation of chapter one. There,
we concluded that (A1, α1) and (A2, α2) are symplectomorphic if and only if
A1 and A2 are diffeomorphic, and their total area is the same.

So let us consider the case where H = kerψ is a finite subgroup of S1, hence
it must be Γn for some natural number n. As S1 is abelian, every subgroup is
normal, so we may consider the quotient group S1/H. The action ψ descends
to an action ψ̃ of S1/H on A which is effective:

ψ̃gH := ψg

is well-defined since if gh−1 ∈ H, then id = ψgh−1 ⇐⇒ ψg = ψh. It is

effective because ψ̃gH = id implies ψg = id, so g ∈ H and thus gH = H, so ψ̃
is injective.

For H = Γn, the map from S1 → S1 sending g 7→ gn is a surjective group
homomorphism with kernel Γn, and thus by the first isomorphism theorem,
S1/Γn ∼= S1. The explicit isomorphism is

βn : S1/Γn −→ S1

gΓn 7−→ gn.

Thus we obtain an action of S1 which is also hamiltonian, allowing us to use
what we proved in the preceding chapters. To obtain an action of S1 instead
of S1/Γ1, we need only compose β−1

n with ψ̃. For g = e2πiθ ∈ S1, we have

β−1
n (g) = e

2πiθ
n . Hence define

Ψ : S1 −→ Diff(A)

g 7−→ ψ
e

2πiθ
n
.
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3.9. Conclusion

To see that this is hamiltonian, denote by ξ̃1 the fundamental vector field
generated by Ψ, and compute for p ∈ A

ξ̃1(p) =
d

dt

∣∣∣∣
t=0

Ψexp(t)(p)

=
d

dt

∣∣∣∣
t=0

ψexp( t
n

)(p)

=
1

n

d

dt

∣∣∣∣
t=0

ψexp(t)(p)

=
1

n
ξ1(p)

by the chain rule. Now let µ a moment map for the original, non-effective
hamiltonian action ψ, and α the area form on A. We see that

−ıξ̃1α = −ı 1
n
ξ1
α

= − 1

n
ıξ1α

=
1

n
µ,

so 1
nµ is a moment map for Ψ.

Hence considering the tuple (A,α,Ψ, 1
nµ) for the action Ψ gives by the dis-

cussion in the previous chapters that it is (S2(2r), 1
4ωEucl, S

1,−1
4h), where S1

acts by rotation and r is the interval length of the moment polytope by 1
nµ.

Hence (A,α, ψ, µ) is
(S2(2r), 1

4ωEucl, S
1,−n

4h),

and the action is given by

eiϕ · (h, θ) = (h, θ + nϕ).

This is just rotation around the vertical axis, but “n times more quickly” than
before.

Equivalently, in terms of projective space, it is equivariantly symplectomorphic
to

(CP1, 2rωFS , S
1, nµ∆),

the action given by
eiϕ · [z0 : z1] = [einϕz0 : z1].

3.9 Conclusion

Let us quickly recapture the content of this chapter. Starting with a connected,
compact surface with an area form (A,α), which is additionally endowed with
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a hamiltonian circle action ψ with moment map µ, we first imposed the fur-
ther constraint that ψ be effective. This led us to the theory of symplectic
toric manifolds and Delzant’s classification theorem, letting us conclude that
(A,α, ψ) is determined (up to equivariant symplectomorphism) by the inter-
val length of the moment polytope µ(A), and must be a two-sphere with a
multiple of the standard area form, being acted on by rotation around the
vertical axis.

If the action is not effective, we have seen that it is either trivial, in which
case the conclusion of chapter one is applicable, or the resulting manifold is
also (up to equivalence) a two-sphere, where the action is rotation by a fixed
integer multiple of the angle. We shall formulate this precisely in the following
theorem:

Theorem 3.24 Let T1 := (A1, α1, ψ1, µ1) and T2 := (A2, α2, ψ2, µ2) be two
compact, connected, orientable manifolds endowed with area forms αi and
hamiltonian circle actions ψi : S1 → Diff(Ai). Let µi the moment map corre-
sponding to the action ψi.

Then there exists an equivariant symplectomorphism between T1 and T2 if and
only if one of the following conditions is satisfied:

1. Both actions are effective and `(µ1(A1)) = `(µ2(A2));

2. Neither action is effective, but both are nontrivial and `(µ1(A1)) =
`(µ2(A2)), as well as | kerψ1| = | kerψ2|;

3. Both actions are trivial, A1 is diffeomorphic to A2, and
∫
A1
α1 =

∫
A2
α2.

Proof
Case 1 This case is precisely the content of the injectivity statement of
Delzant’s classification, so there is nothing left to prove. Let r = `(µi(Ai)).
The work done in section 3.7 shows that Ti is equivalent to (S2(2r), 1

4ωEucl, S
1,−1

4h),
the action given by rotation.

Case 2 Let ni = | kerψi| and µ̃i the moment map for the action on Ai by
S1/ kerψi. Let ri = `(µ̃i(Ai)). The induced symplectic toric manifolds are
equivalent if and only if r1 = r2 by Delzant’s theorem, and by section 3.8, Ti
is equivariantly symplectomorphic to

(S2(2ri),
1
4ωEucl, ψ

ϕ
i (θ, h) = (θ + niϕ, h),−ni

4 h).

So for these to be equivalent, we need in addition n1 = n2. Hence T1 is
equivalent to T2 if and only if r1 = r2 and n1 = n2; Noting that `(µi(Ai)) =
niri then gives the claim.

Case 3 Any symplectic manifold (M,ω) can be endowed with the trivial circle
action ψθ = id for all θ ∈ S1, so this imposes no additional constraint on our
surfaces. The work that was done in chapter 1 applies to the tuples (A1, α1)
and (A2, α2), and the claim is precisely theorem 2.1. �

45



Bibliography

[1] Ana Cannas da Silva. Lecture Notes on Symplectic Geometry. Springer-
Verlag Berlin Heidelberg, 2001. isbn: 9783540453307.

[2] Ana Cannas da Silva. Seminar on Symplectic Toric Manifolds. url:
http://www.vvz.ethz.ch/Vorlesungsverzeichnis/lerneinheit.

view?semkez=2019S&ansicht=ALLE&lerneinheitId=130781&lang=en

(visited on 05/28/2019).

[3] John M. Lee. Introduction to Smooth Manifolds. Springer-Verlag New
York, 2003. isbn: 9780387217529.

[4] Wang Zuoqin. Compactly Supported de Rham Cohomology. url: http:
//staff.ustc.edu.cn/~wangzuoq/Courses/16F-Manifolds/Notes/

Lec21.pdf (visited on 04/30/2019).

[5] Ben Andrews. de Rham Cohomology. Lectures on Differential Geometry.
url: https://maths-people.anu.edu.au/~andrews/DG/DG_chap15.
pdf (visited on 05/22/2019).

[6] Günter Ziegler. Lectures on Polytopes. Springer-Verlag New York, 1995.
isbn: 9780387943299.

[7] Thomas Delzant. “Hamiltoniens périodiques et images convexes de l’application
moment”. In: Bulletin de la Société Mathématique de France (1988).
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